• 1.

    WHO, 2012. T3: Test. Treat. and Track. Scaling Up Diagnostic Testing, Treatment and Surveillance of Malaria. Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 2.

    WHO, 2011. Universal Access to Malaria Diagnostic Testing—An Operational Manual. November 2011 (rev. February 2013). Geneva, Switzerland: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bell D, Wongsrichanalai C, Barnwell JW, 2006. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 4 (Suppl): S7S20.

    • Search Google Scholar
    • Export Citation
  • 4.

    Mouatcho JC, Goldring JPD, 2013. Malaria rapid diagnostic tests: challenges and prospects. J Med Microbiol 62: 14911505.

  • 5.

    Mundy C, Ngwira M, Kadewele G, Bates I, Squire SB, Gilks CF, 2000. Evaluation of microscope condition in Malawi. Trans R Soc Trop Med Hyg 94: 583584.

  • 6.

    Bates I, Bekoe V, Asamoa-Adu A, 2004. Improving the accuracy of malaria-related laboratory tests in Ghana. Malar J 3: 38.

  • 7.

    Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA, 2006. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis 42: 377382.

    • Search Google Scholar
    • Export Citation
  • 8.

    Stothard JR, Kabatereine NB, Tukahebwa EM, Kazibwe F, Mathieson W, Webster JP, Fenwick A, 2005. Field evaluation of the Meade Readiview handheld microscope for diagnosis of intestinal schistosomiasis in Ugandan school children. Am J Trop Med Hyg 73: 949955.

    • Search Google Scholar
    • Export Citation
  • 9.

    Bogoch II, Andrews JR, Speich B, Utzinger J, Ame SM, Ali SM, Keiser J, 2013. Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study. Am J Trop Med Hyg 88: 626629.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bogoch II, Coulibaly JT, Andrews JR, Speich B, Keiser J, Stothard JR, N'Goran EK, Utzinger J, 2014. Evaluation of portable microscopic devices for the diagnosis of Schistosoma and soil-transmitted helminth infection. Parasitology 141: 18111818.

    • Search Google Scholar
    • Export Citation
  • 11.

    Bogoch II, Andrews JR, Speich B, Ame SM, Ali SM, Stothard JR, Utzinger J, Keiser J, 2014. Quantitative evaluation of a handheld light microscope for field diagnosis of soil-transmitted helminth infection. Am J Trop Med Hyg 91: 11381141.

    • Search Google Scholar
    • Export Citation
  • 12.

    Stothard JR, Nabatte B, Sousa-Figueiredo JC, Kabatereine NB, 2014. Towards malaria microscopy at the point-of-contact: an assessment of the diagnostic performance of the Newton Nm1 microscope in Uganda. Parasitology 141: 18191825.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ephraim RKD, Duah E, Cybulski JS, Prakash M, D'Ambrosio MV, Fletcher DA, Keiser J, Andrews JR, Bogoch II, 2015. Diagnosis of Schistosoma haematobium infection with a mobile phone-mounted foldscope and a reversed-lens CellScope in Ghana. Am J Trop Med Hyg 92: 12531256.

    • Search Google Scholar
    • Export Citation
  • 14.

    WHO, 2009. Malaria Microscopy Quality Assurance Manual—Version 1. Geneva, Switzerland: World Health Organization.

  • 15.

    WHO, 2010. Basic Malaria Microscopy, Part I. Learner's Guide, 2nd edition. Geneva, Switzerland: World Health Organization.

  • 16.

    WHO Malaria Policy Advisory Committee and Secretariat, 2013. Malaria Policy Advisory Committee to the WHO: conclusions and recommendations of September 2013 meeting. Malar J 12: 456.

    • Search Google Scholar
    • Export Citation
  • 17.

    Collier JA, Longmore JM, 1983. The reliability of the microscopic diagnosis of malaria in the field and in the laboratory. Ann Trop Med Parasitol 77: 113117.

    • Search Google Scholar
    • Export Citation
  • 18.

    Longmore M, 1986. Community laboratory work and hand held microscopes. Trans R Soc Trop Med Hyg 80: 849850.

  • 19.

    Koydemir HC, Gorocs Z, Tseng D, Cortazar B, Feng S, Chan RYL, Burbano J, McLeod E, Ozcan A, 2015. Rapid imaging, detection and quantification of Giardia lamblia cysts using mobile-phone based fluorescent microscopy and machine learning. Lab Chip 15: 12841293.

    • Search Google Scholar
    • Export Citation
  • 20.

    D'Ambrosio MV, Bakalar M, Bennuru S, Reber C, Skandarajah A, Nilsson L, Switz N, Kamgno J, Pion S, Boussinesq M, Nutman TB, Fletcher DA, 2015. Point-of-care quantification of blood-borne filarial parasites with a mobile phone microscope. Sci Transl Med 7: 286re4.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 

 

 

 

 

 

 

Evaluation of Malaria Diagnoses Using a Handheld Light Microscope in a Community-Based Setting in Rural Côte d'Ivoire

View More View Less
  • 1 Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.
  • | 2 Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
  • | 3 Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
  • | 4 University of Basel, Basel, Switzerland.
  • | 5 Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California.
  • | 6 Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada.
  • | 7 Division of Infectious Diseases, Toronto General Hospital, Toronto, Canada.
  • | 8 Department of Medicine, University of Toronto, Toronto, Canada.

Portable microscopy may facilitate quality diagnostic care in resource-constrained settings. We compared a handheld light microscope (Newton Nm1) with a mobile phone attachment to conventional light microscopy for the detection of Plasmodium falciparum in a cross-sectional study in rural Côte d'Ivoire. Single Giemsa-stained thick blood film from 223 individuals were prepared and read by local laboratory technicians on both microscopes under 1,000× magnification with oil. Of the 223 samples, 162 (72.6%) were P. falciparum positive, and the overall mean parasite count was 1,392/μL of blood. Sensitivity and specificity of the handheld microscope was 80.2% (95% confidence interval [CI]: 73.1–85.9%) and 100.0% (95% CI: 92.6–100.0%), respectively, with a positive and negative predictive value of 100.0% (95% CI: 96.4–100.0%) and 65.6% (95% CI: 54.9–74.9%), respectively. If sensitivity can be improved, handheld light microscopy may become a valuable public health tool for P. falciparum diagnosis.

Author Notes

* Address correspondence to Isaac I. Bogoch, Divisions of General Internal Medicine and Infectious Diseases, Toronto General Hospital, 14EN-209, 200 Elizabeth Street, Toronto, ON, Canada M5G 2C4. E-mail: isaac.bogoch@uhn.ca† These authors contributed equally to this work.

Financial support: Jean T. Coulibaly is supported by the Programme d'Appui Stratégique à la Recherche Scientifique (PASRES), Côte d'Ivoire (reference no. 113). Isaac I. Bogoch is supported by Grand Challenges Canada, Stars in Global Health, 0631-01-10 (www.grandchallenges.ca) and a grant from the MSH UHN AMO Innovation Fund.

Authors' addresses: Jean T. Coulibaly, Mamadou Ouattara, and Eliézer K. N'Goran, Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire, E-mails: couljeanvae@yahoo.fr, mamadou_ouatt@yahoo.fr, and eliezerngoran@yahoo.fr. Jennifer Keiser, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland, E-mail: jennifer.keiser@unibas.ch. Bassirou Bonfoh, Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire, E-mail: bassirou.bonfoh@csrs.ci. Jason R. Andrews, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, E-mail: jandr@stanford.edu. Isaac I. Bogoch, Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada, and Division of Infectious Diseases, Toronto General Hospital, Toronto, Canada, E-mail: isaac.bogoch@uhn.ca.

Save