Venom and Purified Toxins of the Spectacled Cobra (Naja naja) from Pakistan: Insights into Toxicity and Antivenom Neutralization

Kin Ying Wong Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Search for other papers by Kin Ying Wong in
Current site
Google Scholar
PubMed
Close
,
Choo Hock Tan Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Search for other papers by Choo Hock Tan in
Current site
Google Scholar
PubMed
Close
, and
Nget Hong Tan Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia

Search for other papers by Nget Hong Tan in
Current site
Google Scholar
PubMed
Close
Restricted access

Geographical variations of snake venoms can result in suboptimal effectiveness of Indian antivenoms that are currently used in most South Asian countries. This study investigated the toxicity and neutralization profile of the venom and toxins from Pakistani spectacled cobra, Naja naja, using VINS polyvalent antivenom (VPAV, India), Naja kaouthia monovalent antivenom (NKMAV, Thailand), and neuro bivalent antivenom (NBAV, Taiwan). Cation-exchange and reverse-phase high-performance liquid chromatography fractionations followed by toxin identification through liquid chromatography–mass spectrometry (MS)/MS indicated that the venom comprised mainly of postsynaptic neurotoxins (NTXs) (long neurotoxins [LNTXs], 28.3%; short neurotoxins [SNTXs], 8%), cytotoxins (CTXs) (31.2%), and acidic phospholipases A2 (12.3%). NKMAV is the most effective in neutralizing the lethal effect of the venom (potency = 1.1 mg venom/mL) and its LNTX (potency = 0.5 mg toxin/mL), consistent with the high content of LNTX in N. kaouthia venom. VPAV was effective in neutralizing the CTX (potency = 0.4 mg toxin/mL), in agreement with the higher CTX abundance in Indian cobra venom. All the three antivenoms were weak in neutralizing the SNTX (potency = 0.03–0.04 mg toxin/mL), including NBAV that was raised from the SNTX-rich Taiwanese cobra venom. In a challenge-rescue experiment, envenomed mice were prevented from death by a maximal dose of VPAV (intravenous 200 μL) but the recovery from paralysis was slow, indicating the need for higher or repeated doses of VPAV. Our results suggest that optimal neutralization for Pakistani N. naja venom may be achieved by improving the formulation of antivenom production to enhance antivenom immunoreactivity against long and SNTXs.

Author Notes

* Address correspondence to Choo Hock Tan, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia, E-mail: tanch@um.edu or Nget Hong Tan, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia, E-mail: tanngethong@yahoo.com.sg.

Financial support: This work was supported by Fundamental Research Grant (FP028-2014A) and the University of Malaya Research Grant (RG282-14AFR) from the Ministry of Higher Education, Government of Malaysia.

Authors' addresses: Kin Ying Wong and Choo Hock Tan, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, E-mails: kinying12@gmail.com and tanchoohock@gmail.com. Nget Hong Tan, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, E-mail: tanngethong@yahoo.com.sg.

  • 1.

    Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F, 2010. Snake bite in south Asia: a review. PLoS Negl Trop Dis 4: e603.

  • 2.

    Tan KY, Tan CH, Fung SY, Tan NH, 2015. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of southeast Asia. J Proteomics 120: 105125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ, 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5: e218.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Warrell DA, Gutierrez JM, Calvete JJ, Williams D, 2013. New approaches and technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian J Med Res 138: 3859.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    World Health Organization, 2010. Guidelines for the Management of Snake-bites. Geneva, Switzerland: World Health Organization, Regional Office for South-East Asia.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Quraishi NA, Qureshi HI, Simpson ID, 2008. A contextual approach to managing snake bite in Pakistan: snake bite treatment with particular reference to neurotoxieity and the ideal hospital snake bite kit. J Pak Med Assoc 58: 325331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Williams DJ, Gutierrez JM, Calvete JJ, Wuster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O'Shea M, Jensen SD, Winkel KD, Warrell DA, 2011. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 74: 17351767.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mackessy SP, 2009. The field of reptile toxinology: snakes, lizards, and their venoms. Mackessy SP, ed. Handbook of Venoms and Toxins of Reptiles. Boca Raton, FL: Taylor and Francis Group, CRC Press, 323

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Alape-Giron A, Sanz L, Escolano J, Flores-Diaz M, Madrigal M, Sasa M, Calvete JJ, 2008. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res 7: 35563571.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wuster W, 1996. Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon 34: 6779.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Sintiprungrat K, Watcharatanyatip K, Senevirathne WD, Chaisuriya P, Chokchaichamnankit D, Srisomsap C, Ratanabanangkoon K, 2015. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics 132: 131143

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Ali SA, Yang DC, Jackson TN, Undheim EA, Koludarov I, Wood K, Jones A, Hodgson WC, McCarthy S, Ruder T, Fry BG, 2013. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J Proteomics 89: 1523.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Khan MS, 1999. Herpetology of habitat types of Pakistan. Pak J Zool 31: 275289.

  • 14.

    Khan MS, 2002. A Guide to the Snakes of Pakistan. Frankfurt am Main, Germany: Edition Chimaira.

  • 15.

    Khan MS, 2014. The snakebite problem in Pakistan. Bull Chicago Herp Soc 49: 165167.

  • 16.

    Wuster W, 1996. Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34: 399406.

  • 17.

    World Health Organization, 2010. WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. Geneva, Switzerland: World Health Organization.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Huang HW, Liu BS, Chien KY, Chiang LC, Huang SY, Sung WC, Wu WG, 2015. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128: 92104.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Leong PK, Fung SY, Tan CH, Sim SM, Tan NH, 2015. Immunological cross-reactivity and neutralization of the principal toxins of Naja sumatrana and related cobra venoms by a Thai polyvalent antivenom (Neuro Polyvalent Snake Antivenom). Acta Trop 149: 8693.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Howard-Jones N, 1985. A CIOMS ethical code for animal experimentation. WHO Chron 39: 5156.

  • 21.

    Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.

  • 22.

    Tan NH, Tan CS, 1988. Acidimetric assay for phospholipase A using egg yolk suspension as substrate. Anal Biochem 170: 282288.

  • 23.

    Tan CH, Tan NH, Tan KY, Kwong KO, 2015. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters. Toxins (Basel) 7: 572581.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Finney DJ, 1952. Probit Analysis. England, United Kingdom: Cambridge University Press.

  • 25.

    Tan CH, Tan KY, Lim SE, Tan NH, 2015. Venomics of the beaked sea snake, Hydrophis schistosus: a minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J Proteomics 126: 121130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Morais V, Ifran S, Berasain P, Massaldi H, 2010. Antivenoms: potency or median effective dose, which to use? J Venom Anim Toxins Incl Trop Dis 16: 191193.

  • 27.

    Rodriguez-Acosta A, Lemoine K, Navarrete L, Giron ME, Aguilar I, 2006. Experimental ophitoxemia produced by the opisthoglyphous lora snake (Philodryas olfersii) venom. Rev Soc Bras Med Trop 39: 193197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Tan CH, Tan NH, 2015. Toxinology of snake venoms: the Malaysian context. Gopalakrishnakone P, Inagaki H, Mukherjee AK, Rahmy TR, Vogel C-W, eds. Snake Venoms. The Netherlands: Springer, 137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Petras D, Sanz L, Segura A, Herrera M, Villalta M, Solano D, Vargas M, Leon G, Warrell DA, Theakston RD, Harrison RA, Durfa N, Nasidi A, Gutierrez JM, Calvete JJ, 2011. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 10: 12661280.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Whitaker RCA, 2004. Snakes of India: The Field Guide. Chennai, India: Draco Books.

  • 31.

    Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH, 2012. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (neuro polyvalent snake antivenom). PLoS Negl Trop Dis 6: e1672.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Dayananda KS, Vishwanath BS, Sharath BK, Gopinath SM, 2013. Purification of non-toxic acidic phospholipase A2 from Indian cobra (Naja naja) venom. Int J Pharma Bio Sci 4: 408415.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Barber CM, Isbister GK, Hodgson WC, 2013. Alpha neurotoxins. Toxicon 66: 4758.

  • 34.

    Yap MK, Tan NH, Sim SM, Fung SY, Tan CH, 2014. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoS Negl Trop Dis 8: e2890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Malasit P, Warrell DA, Chanthavanich P, Viravan C, Mongkolsapaya J, Singhthong B, Supich C, 1986. Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. Br Med J (Clin Res Ed) 292: 1720.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gutierrez JM, Leon G, Lomonte B, 2003. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet 42: 721741.

  • 37.

    Sriprapat S, Aeksowan S, Sapsutthipas S, Chotwiwatthanakun C, Suttijitpaisal P, Pratanaphon R, Khow O, Sitprija V, Ratanabanangkoon K, 2003. The impact of a low dose, low volume, multi-site immunization on the production of therapeutic antivenoms in Thailand. Toxicon 41: 5764.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tan NH, 1983. Improvement of Malayan cobra (Naja naja sputatrix) antivenin. Toxicon 21: 7579.

Past two years Past Year Past 30 Days
Abstract Views 708 489 23
Full Text Views 858 15 0
PDF Downloads 511 18 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save