Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission

Elizabeth K. K. Glennon Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California

Search for other papers by Elizabeth K. K. Glennon in
Current site
Google Scholar
PubMed
Close
,
L. Garry Adams Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California

Search for other papers by L. Garry Adams in
Current site
Google Scholar
PubMed
Close
,
Derrick R. Hicks Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California

Search for other papers by Derrick R. Hicks in
Current site
Google Scholar
PubMed
Close
,
Katayoon Dehesh Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California

Search for other papers by Katayoon Dehesh in
Current site
Google Scholar
PubMed
Close
, and
Shirley Luckhart Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California

Search for other papers by Shirley Luckhart in
Current site
Google Scholar
PubMed
Close
Restricted access

Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation.

Author Notes

* Address correspondence to Shirley Luckhart, Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, 3437 Tupper Hall, One Shields Avenue, Davis, CA 95616. E-mail: sluckhart@ucdavis.edu

Financial support: This work was supported by the University of California, Davis College of Biological Sciences Dean's Kingdom Crossing Project, funded by the Stanley and Jacqueline Schilling Endowment. The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Disclosure: Shirley Luckhart and Elizabeth K. K. Glennon are authors on a provisional patent.

Authors' addresses: Elizabeth K. K. Glennon and Shirley Luckhart, Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, E-mails: ekglennon@ucdavis.edu and sluckhart@ucdavis.edu. L. Garry Adams, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, E-mail: gadams@cvm.tamu.edu. Derrick R. Hicks, Department of Plant Pathology, University of California, Davis, Davis, CA, E-mail: drhicks1@uw.edu. Katayoon Dehesh, Department of Plant Biology, University of California, Davis, Davis, CA, E-mail: kdehesh@ucdavis.edu.

  • 1.

    World Health Organization, 2015. World Malaria Report 2015. Available at: http://www.who.int/malaria/publications/world-malaria-report-2015/report/en/. Accessed December 1, 2015.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bruzzone S, Moreschi I, Usai C, Guida L, Salis A, Scarfi S, Millo E, De Flora A, Zocchi E, 2007. Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. Proc Natl Acad Sci USA 104: 5759–5764.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L, Usai C, 2001. The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. Proc Natl Acad Sci USA 98: 14859–14864.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Nagamune K, Hicks LM, Fux B, Brossier F, Chini EN, Sibley LD, 2008. Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature 451: 207–210.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S, 2014. Abscisic acid and abiotic stress tolerance—different tiers of regulation. J Plant Physiol 171: 486–496.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Zocchi E, Basile G, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Carpaneto A, Magrassi R, Usai C, 2003. ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. J Cell Sci 116: 629–636.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bruzzone S, Ameri P, Briatore L, Mannino E, Basile G, Andraghetti G, Grozio A, Magnone M, Guida L, Scarfi S, Salis A, Damonte G, Sturla L, Nencioni A, Fenoglio D, Fiory F, Miele C, Beguinot F, Ruvolo V, Bormioli M, Colombo G, Maggi D, Murialdo G, Cordera R, De Flora A, Zocchi E, 2011. The plant hormone abscisic acid increases in human plasma after hyperglycemia and stimulates glucose consumption by adipocyte myoblasts. FASEB J 26: 1251–1260.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Puce S, Basile G, Bavestrello G, Bruzzone S, Cerrano C, Giovine M, Arillo A, Zocchi E, 2004. Abscisic acid signaling through cyclic ADP-ribose in hydroid regeneration. J Biol Chem 279: 39783–39788.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Scarfi S, Ferraris C, Fruscione F, Fresia C, Guida L, Bruzzone S, Usai C, Parodi A, Millo E, Salis A, Burastero G, De Flora A, 2008. Cyclic ADP-ribose-mediated expansion and stimulation of human mesenchymal stem cells by the plant hormone abscisic acid. Stem Cells 26: 2855–2864.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bodrato N, Franco L, Fresia C, Guida L, Usai C, Salis A, Moreschi I, Ferraris C, Verderio C, Basile G, Bruzzone S, Scarfi S, De Flora A, Zocchi E, 2009. Abscisic acid activates the murine microglial cell line N9 through the second messenger cyclic ADP-ribose. J Biol Chem 284: 14777–14787.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Guri AJ, Evans NP, Hontecillas R, Bassaganya-Riera J, 2011. T cell PPARγ is required for the anti-inflammatory efficacy of abscisic acid against experimental IBD. J Nutr Biochem 22: 812–819.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Guri AJ, Hontecillas R, Bassaganya-Riera J, 2010. Abscisic acid ameliorates experimental IBD by downregulating cellular adhesion molecule expression and suppressing immune cell infiltration. Clin Nutr 29: 824–831.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rupani AB, Amarapurkar AD, 2009. Hepatic changes in fatal malaria: an emerging problem. Ann Trop Med Parasitol 103: 119–127.

  • 14.

    Schofield L, 2007. Intravascular infiltrates and organ-specific inflammation in malaria pathogenesis. Immunol Cell Biol 85: 130–137.

  • 15.

    Negri P, Maggi MD, Ramirez L, de Feudis L, Szwarski N, Quintana S, Eguaras MJ, Lamattina L, 2015. Abscisic acid enhances the immune response in Apis mellifera and contributes to the colony fitness. Apidologie (Celle) 46: 542–557.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Luckhart S, Crampton AL, Zamora R, Lieber MJ, Dos Santos PC, Peterson TM, Emmith N, Lim J, Wink DA, Vodovotz Y, 2003. Mammalian transforming growth factor beta 1 activated after ingestion by Anopheles stephensi modulates immunity. Infect Immun 71: 3000–3009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Pakpour N, Corby-Harris V, Green GP, Smithers HM, Cheung KW, Riehle MA, Luckhart S, 2012. Ingested human insulin inhibits the mosquito NF-κB-dependent immune response to Plasmodium falciparum. Infect Immun 80: 2141–2149.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bruzzone S, Basile G, Mannino E, Sturla L, Magnone M, Grozio A, Salis A, Fresia C, Vigliarolo T, Guida L, De Flora A, Tossi V, Cassia R, Lamattina L, Zocchi E, 2012. Autocrine abscisic acid mediates the UV-B-induced inflammatory response in human granulocytes and keratinocytes. J Cell Physiol 227: 2502–2510.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Marois E, 2011. The multifaceted mosquito anti-Plasmodium response. Curr Opin Microbiol 14: 429–435.

  • 20.

    Roux CM, Butler BP, Chau JY, Paixao TA, Cheung KW, Santos TL, Luckhart S, Tsolis RM, 2010. Both hemolytic anemia and malaria parasite-specific factors increase susceptibility to Nontyphoidal Salmonella enterica serovar Typhimurium infection in mice. Infect Immun 78: 1520–1527.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Engelberth MJ, Engelberth J, 2009. Monitoring plant hormones during stress responses. J Vis Exp 28: 1127.

  • 22.

    Schmelz EA, Alborn HT, Engelberth J, Tumlinson JH, 2003. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol 133: 295–306.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Engelberth J, Schmelz EA, Alborn HT, Cardoza YJ, Huang J, Tumlinson JH, 2003. Simultaneous quantification of jasmonic acid and salicylic acid in plants by vapor-phase extraction and gas chromatography-chemical ionization-mass spectrometry. Anal Biochem 312: 242–250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Drexler AL, Pietri JE, Pakpour N, Hauck E, Wang B, Glennon EK, Georgis M, Riehle MA, Luckhart S, 2014. Human IGF1 regulates midgut oxidative stress and epithelial homeostasis to balance lifespan and Plasmodium falciparum resistance in Anopheles stephensi. PLoS Pathog 10: e1004231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lambros C, Vanderberg JP, 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol 65: 418–420.

  • 26.

    Miao J, Fan Q, Parker D, Li X, Li J, Cui L, 2013. Puf mediates translation repression of transmission-blocking vaccine candidates in malaria parasites. PLoS Pathog 9: e1003268.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Crampton A, Luckhart S, 2001. The role of As60A, a TGF-beta homolog, in Anopheles stephensi innate immunity and defense against Plasmodium infection. Infect Genet Evol 1: 131–141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Dong Y, Das S, Cirimotich C, Souza-Neto JA, McLean KJ, Dimopoulos G, 2011. Engineered Anopheles immunity to Plasmodium infection. PLoS Pathog 7: e1002458.

  • 29.

    Hauck ES, Antonova-Koch Y, Drexler A, Pietri J, Pakpour N, Liu D, Blacutt J, Riehle MA, Luckhart S, 2013. Overexpression of phosphatase and tensin homolog improves fitness and decreases Plasmodium falciparum development in Anopheles stephensi. Microbes Infect 15: 775–787.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chau JY, Tiffany CM, Nimishakavi S, Lawrence JA, Pakpour N, Mooney JP, Lokken KL, Caughey GH, Tsolis RM, Luckhart S, 2013. Malaria-associated L-arginine deficiency induces mast cell-associated disruption to intestinal barrier defenses against nontyphoidal Salmonella bacteremia. Infect Immun 81: 3515–3526.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Guri AJ, Hontecillas R, Si H, Liu D, Bassaganya-Riera J, 2007. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clin Nutr 26: 107–116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hontecillas R, Roberts PC, Carbo A, Vives C, Horne WT, Genis S, Velayudhan B, Bassaganya-Riera J, 2013. Dietary abscisic acid ameliorates influenza-virus-associated disease and pulmonary immunopathology through a PPARγ-dependent mechanism. J Nutr Biochem 24: 1019–1027.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hontecillas R, Bassaganya-Riera J, 2012. Expression of PPARγ in intestinal epithelial cells is dispensable for the prevention of colitis by dietary abscisic acid. ESPEN J 7: e189–e195.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Guha M, Maity P, Choubey V, Mitra K, Reiter RJ, Bandyopadhyay U, 2007. Melatonin inhibits free radical-mediated mitochondrial-dependent hepatocyte apoptosis and liver damage induced during malarial infection. J Pineal Res 43: 372–381.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Srivastava A, Khanduri A, Lakhtakia S, Pandey R, Choudhuri G, 1996. Falciparum malaria with acute liver failure. Trop Gastroenterol 17: 172–174.

  • 36.

    Fu Y, Ding Y, Zhou TL, Ou QY, Xu WY, 2012. Comparative histopathology of mice infected with the 17XL and 17XNL strains of Plasmodium yoelii. J Parasitol 98: 310–315.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Brugat T, Cunnningham D, Sodenkamp J, Coomes S, Wilson M, Spence PJ, Jarra W, Thompson J, Scudamore C, Langhorne J, 2014. Sequestration and histopathology in Plasmodium chabaudi malaria are influenced by the immune response in an organ-specific manner. Cell Microbiol 16: 687–700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Rodríquez-Acosta A, Finol HJ, Pulido-Méndez M, Márquez A, Andrade G, González N, Aguilar I, Girón ME, Pinto A, 1998. Liver ultrastructural pathology in mice infected with Plasmodium berghei. J Submicrosc Cytol Pathol 30: 299–307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Guha M, Kumar S, Choubey V, Maity P, Bandyopadhyay U, 2006. Apoptosis in liver during malaria: role of oxidative stress and implication of mitochondrial pathway. FASEB J 20: 1224–1226.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wunderlich F, Al-Quraishy S, Dkhil MA, 2014. Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 5: 559.

  • 41.

    Engwerda CR, Beattie L, Amante FH, 2005. The importance of the spleen in malaria. Trends Parasitol 21: 75–80.

  • 42.

    Del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG, 2012. The role of the spleen in malaria. Cell Microbiol 14: 343–355.

  • 43.

    Vigliarolo T, Guida L, Millo E, Fresia C, Turco E, De Flora A, Zocchi E, 2015. Abscisic acid transport in human erythrocytes. J Biol Chem 290: 13042–13052.

  • 44.

    Lamour SD, Straschil U, Saric J, Delves MJ, 2014. Changes in metabolic phenotypes of Plasmodium falciparum in vitro cultures during gametocyte development. Malar J 13: 468.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Clayton AM, Dong Y, Dimopoulos G, 2014. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 6: 169–181.

  • 46.

    Luckhart S, Vodovotz Y, Cui L, Rosenberg R, 1998. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc Natl Acad Sci USA 95: 5700–5705.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Peterson TML, Gow AJ, Luckhart S, 2007. Nitric oxide metabolites induced in Anopheles stephensi control malaria parasite infection. Free Radic Biol Med 42: 132–142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, Antonioli B, Fruscione F, Magnone M, Scarfi S, De Flora A, Zocchi E, 2008. Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger. J Biol Chem 283: 32188–32197.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Bassaganya-Riera J, Guri AJ, Lu P, Climent M, Carbo A, Sobral BW, Horne WT, Lewis SN, Bevan DR, Hontecillas R, 2011. Abscisic acid regulates inflammation via ligand-binding domain-independent activation of peroxisome proliferator-activated receptor gamma. J Biol Chem 286: 2504–2516.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Guri AJ, Hontecillas R, Ferrer G, Casagran O, Wankhade U, Noble AM, Eizirik DL, Ortis F, Cnop M, Liu D, Si H, Bassaganya-Riera J, 2008. Loss of PPAR gamma in immune cells impairs the ability of abscisic acid to improve insulin sensitivity by suppressing monocyte chemoattractant protein-1 expression and macrophage infiltration into white adipose tissue. J Nutr Biochem 19: 219–228.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Serghides L, Kain KC, 2001. Peroxisome proliferator-activated receptor gamma-retinoid x receptor agonists increase CD36-dependent phagocytosis of Plasmodium falciparum-parasitized erythrocytes and decrease malaria-induced TNF-α secretion by monocytes/macrophages. J Immunol 166: 6742–6748.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC, 2004. CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189: 204–213.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Ak Boggild, Krudsood S, Patel SN, Serghides L, Tangpukdee N, Katz K, Wilairatana P, Liles WC, Looareesuwan S, Kain KC, 2009. Use of peroxisome proliferator-activated receptor gamma agonists as adjunctive treatments for Plasmodium falciparum malaria: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis 49: 841–849.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Serghides L, McDonald CR, Lu Z, Friedel M, Cui C, Ho KT, Mount HT, Sled JG, Kain KC, 2014. PPARγ agonists improve survival and neurocognitive outcomes in experimental cerebral malaria and induce neuroprotective pathways in human malaria. PLoS Pathog 10: e1003980.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Jacobs P, Radzioch D, Stevenson MM, 1995. Nitric oxide expression in the spleen, but not in the liver, correlates with resistance to blood-stage malaria in mice. J Immunol 155: 5306–5313.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Nahrevanian H, Dascombe MJ, 2002. Expression of inducible nitric oxide synthase (iNOS) mRNA in target organs of lethal and non-lethal strains of murine malaria. Parasite Immunol 24: 471–478.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Meis JF, Ponnudurai T, 1987. Ultrastructural studies on the interaction of Plasmodium falciparum ookinetes with the midgut epithelium of Anopheles stephensi mosquitoes. Parasitol Res 73: 500–506.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Eggleston P, Lu W, Zhao Y, 2000. Genomic organization and immune regulation of the defensin gene from the mosquito, Anopheles gambiae. Insect Mol Biol 9: 481–490.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Mitri C, Jacques JC, Thiery I, Riehle MM, Xu J, Bischoff E, Morlais I, Nsango SE, Vernick KD, Bourgouin C, 2009. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog 5: e1000576.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Magnone M, Bruzzone S, Guida L, Damonte G, Millo E, Scarfi S, Usai C, Sturla L, Palombo D, De Flora A, Zocchi E, 2009. Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis. J Biol Chem 284: 17808–17818.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Smith PW, Diagana TT, Yeung BK, 2014. Progressing the global antimalarial portfolio: finding drugs which target multiple Plasmodium life stages. Parasitology 141: 66–76.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Gheldof N, Wang X, Engeseth NJ, 2002. Identification and quantification of antioxidant components of honeys from various floral sources. J Agric Food Chem 50: 5870–5877.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Zeevart JAD, 1971. (+)-Abscisic acid content of spinach in relation to photoperiod and water stress. Plant Physiol 48: 86–90.

  • 64.

    Magnone M, Ameri P, Salis A, Andraghetti G, Emionite L, Murialdo G, De Flora A, Zocchi E, 2015. Microgram amounts of abscisic acid in fruit extracts improve glucose tolerance and reduce insulinemia in rats and in humans. FASEB J 29: 4783–4793.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 539 406 8
Full Text Views 504 13 0
PDF Downloads 155 16 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save