• 1.

    Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.

    • Search Google Scholar
    • Export Citation
  • 2.

    McGraw EA, O'Neill SL, 2013. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11: 181193.

  • 3.

    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139: 12681278.

    • Search Google Scholar
    • Export Citation
  • 4.

    Ferguson NM, Hue Kien DT, Clapham H, Aguas R, Trung VT, Bich Chau TN, Popovici J, Ryan PA, O'Neill SL, McGraw EA, Long VT, Dui LT, Nguyen HL, Vinh Chau NV, Wills B, Simmons CP, 2015. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti. Sci Transl Med 7: 279ra37.

    • Search Google Scholar
    • Export Citation
  • 5.

    Mains JW, Brelsfoard CL, Crain PR, Huang YX, Dobson SL, 2013. Population impacts of Wolbachia on Aedes albopictus. Ecol Appl 23: 493501.

  • 6.

    Rašić G, Endersby EM, Williams C, Hoffmann AA, 2014. Using Wolbachia-based releases for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecol Appl 24: 12261234.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hoffmann AA, Iturbe-Ormaetxe I, Callahan A, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O'Neill SL, 2014. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8: e3115.

    • Search Google Scholar
    • Export Citation
  • 8.

    Hoffmann AA, Ross PA, Rašić G, 2015. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8: 751768.

    • Search Google Scholar
    • Export Citation
  • 9.

    Dean MD, 2006. A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans. Proc R Soc Lond B Biol Sci 273: 14151420.

    • Search Google Scholar
    • Export Citation
  • 10.

    Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L, 2013. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 9: e1003896.

    • Search Google Scholar
    • Export Citation
  • 11.

    Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, Teixeira L, Jiggins FM, 2014. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog 10: e1004369.

    • Search Google Scholar
    • Export Citation
  • 12.

    McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL, 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141144.

    • Search Google Scholar
    • Export Citation
  • 13.

    Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.

    • Search Google Scholar
    • Export Citation
  • 14.

    Xi ZY, Khoo CCH, Dobson SL, 2005. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326328.

  • 15.

    Bian GW, Xu Y, Lu P, Xie Y, Xi ZY, 2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathog 6: e1000833.

    • Search Google Scholar
    • Export Citation
  • 16.

    Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, 2011. Dynamics of the “Popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.

    • Search Google Scholar
    • Export Citation
  • 17.

    Ross PA, Endersby NM, Yeap HL, Hoffmann AA, 2014. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti. Am J Trop Med Hyg 91: 198205.

    • Search Google Scholar
    • Export Citation
  • 18.

    Barton NH, Turelli M, 2011. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of allee effects. Am Nat 178: E48E75.

    • Search Google Scholar
    • Export Citation
  • 19.

    Ritchie SA, Townsend M, Paton CJ, Callahan AG, Hoffmann AA, 2015. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti. PLoS Negl Trop Dis 9: e0003930.

    • Search Google Scholar
    • Export Citation
  • 20.

    Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, Hoffmann AA, 2014. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7: 58.

    • Search Google Scholar
    • Export Citation
  • 21.

    De Vos K, 2005. Cell Counter v2.0. Available at: http://rsb.info.nih.gov/ij/plugins/cell-counter.html. Accessed June 10, 2013.

  • 22.

    Schneider CA, Rasband WS, Eliceiri KW, 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671675.

  • 23.

    Briegel H, 1990. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36: 165172.

    • Search Google Scholar
    • Export Citation
  • 24.

    Nasci RS, 1990. Relationship of wing length to adult dry-weight in several mosquito species (Diptera, Culicidae). J Med Entomol 27: 716719.

    • Search Google Scholar
    • Export Citation
  • 25.

    Anderson LE, 1954. Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist 57: 242244.

  • 26.

    Colton YM, Chadee DD, Severson DW, 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17: 195204.

    • Search Google Scholar
    • Export Citation
  • 27.

    Oliva LO, Correia JC, Albuquerque CMR, 2014. How mosquito age and the type and color of oviposition sites modify skip-oviposition behavior in Aedes aegypti (Diptera: Culicidae)? J Insect Behav 27: 8191.

    • Search Google Scholar
    • Export Citation
  • 28.

    Hoffmann AA, Turelli M, 1997. Cytoplasmic incompatibility in insects. O'Neill S, Hoffmann AA, Werren J, eds. Influential Passengers: Microorganisms and Invertebrate Reproduction. Oxford, UK: Oxford University Press, 4280.

    • Search Google Scholar
    • Export Citation
  • 29.

    R Core Team, 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • 30.

    Hoffmann AA, Turelli M, Harshman LG, 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933948.

    • Search Google Scholar
    • Export Citation
  • 31.

    Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA, 2014. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti. PLoS Negl Trop Dis 8: 10.

    • Search Google Scholar
    • Export Citation
  • 32.

    Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 78: 47404743.

    • Search Google Scholar
    • Export Citation
  • 33.

    Duhrkopf RE, Benny H, 1990. Differences in the larval alarm reaction in populations of Aedes aegypti and Aedes albopictus. J Am Mosq Control Assoc 6: 411414.

    • Search Google Scholar
    • Export Citation
  • 34.

    McMeniman CJ, O'Neill SL, 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 4: e748.

    • Search Google Scholar
    • Export Citation
  • 35.

    Tortosa P, Charlat S, Labbé P, Dehecq J-S, Barré H, Weill M, 2010. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility. PLoS One 5: e9700.

    • Search Google Scholar
    • Export Citation
  • 36.

    Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB, 2014. Temperature alters Plasmodium blocking by Wolbachia. Sci Rep 4: 3932.

  • 37.

    Min KT, Benzer S, 1997. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94: 1079210796.

    • Search Google Scholar
    • Export Citation
  • 38.

    Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR, 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9: e1003607.

    • Search Google Scholar
    • Export Citation
  • 39.

    Dobson SL, Marsland EJ, Rattanadechakul W, 2002. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160: 10871094.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion

View More View Less
  • Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia; Commonwealth Scientific and Industrial Research Organization, Acton, Australia

Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread.

Author Notes

* Address correspondence to Jason K. Axford, Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Vic 3052, Australia. E-mail: jkaxford@unimelb.edu.au

Financial support: This study was supported by a program grant from the National Health and Medical Research Council and fellowship from the Australian Research Council.

Authors' addresses: Jason K. Axford, Perran A. Ross, Ashley G. Callahan, and Ary A. Hoffmann, Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Australia, E-mails: jkaxford@unimelb.edu.au, paross@student.unimelb.edu.au, ashleygc@unimelb.edu.au, and ary@unimelb.edu.au. Heng Lin Yeap, CSIRO, Acton, Australia, E-mail: henglin.yeap@csiro.au.

Save