Haitham E, Raoult D, Drancourt M, 2013. Relapsing fever borreliae in Africa. Am J Trop Med Hyg 89: 288–292.
Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D, 2015. Blood-borne Candidatus Borrelia algerica in a patient with prolonged fever in Oran, Algeria. Am J Trop Med Hyg 93: 1070–1073.
Sokhna C, Mediannikov O, Fenollar F, Bassene H, Diatta G, Tall A, Trape JF, Drancourt M, Raoult D, 2013. Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl Trop Dis 7: e1999.
Cutler S, Abdissa A, Trape JF, 2009. New concepts for the old challenge of African relapsing fever borreliosis. Clin Microbiol Infect 15: 400–406.
Fekade D, Knox K, Hussein K, Melka A, Lalloo DG, Coxon RE, Warrell DA, 1996. Prevention of Jarisch-Herxheimer reactions by treatment with antibodies against tumor necrosis factor alpha. N Engl J Med 335: 311–315.
Schwan T, Gage K, Karstens R, Schrumpf M, Hayes S, Barbour AG, 1992. Identification of the tick-borne relapsing fever spirochete Borrelia hermsii by using a species-specific monoclonal antibody. J Clin Microbiol 30: 790–795.
Canica M, Nato F, Du Merle L, Mazie JC, Baranton G, Postic D, 1993. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25: 441–448.
Barbour AG, Tessier SL, Todd WJ, 1983. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41: 795–804.
Barbour AG, Heiland RA, Howe TR, 1985. Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates. J Infect Dis 152: 478–484.
Barbour AG, Tessier SL, Hayes SF, 1984. Variation in a major surface protein of Lyme disease spirochetes. Infect Immun 45: 94–100.
Barbour AG, Hayes SF, Heiland RA, Schrumpf ME, Tessier SL, 1986. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52: 549–554.
Köhler G, Milstein C, 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.
D'Acremont V, Kilowoko M, Kyungu E, Philipina S, Sangu W, Kahama-Maro J, Lengeler C, Cherpillod P, Kaiser L, Genton B, 2014. Beyond malaria-causes of fever in outpatient Tanzanian children. N Engl J Med 370: 809–817.
Fotso Fotso A, Mediannikov O, Padmanabhan R, Robert C, Fournier PE, Raoult D, Drancourt M, 2014. Genome sequence of Borrelia crocidurae strain 03-02, a clinical isolate from Senegal. Genome Announc 2: e01150–e14.
Yu Y, Kowalczewska M, Decloquement P, Nappez C, La Scola B, 2006. Production of monoclonal antibodies to Tropheryma whipplei and identification of recognized epitopes by two-dimensional electrophoresis and mass spectrometry. J Clin Microbiol 44: 4179–4185.
Kowalczewska M, Fenollar F, Villard C, Azza S, Roux M, Raoult D, 2008. An immunoproteomic approach for identification of clinical biomarkers of Whipple's disease. Proteomics Clin Appl 2: 504–516.
Renesto P, Samson L, Ogata H, Azza S, Fourquet P, Gorvel JP, Heinzen RA, Raoult D, 2006. Identification of two putative rickettsial adhesins by proteomic analysis. Res Microbiol 157: 605–612.
Kowalczewska M, Fenollar F, Lafitte D, Raoult D, 2006. Identification of candidate antigen in Whipple's disease using a serological proteomic approach. Proteomics 6: 3294–3305.
Renesto P, Azza S, Dolla A, Fourquet P, Vestris G, Gorvel JP, Raoult D, 2005. Rickettsia conorii and R. prowazekii proteome analysis by 2DE-MS: a step toward functional analysis of rickettsial genomes. Ann N Y Acad Sci 1063: 90–93.
Shevchenko A, Wilm M, Vorm O, Mann M, 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS, 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567.
Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C, Parola P, Drancourt M, 2014. MALDI-TOF mass spectrometry detection of pathogens in vectors: The Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis 8: e2984.
Haitham E, Henry M, Diatta G, Mediannikov O, Sokhna C, Tall A, Socolovschi C, Cutler SJ, Bilcha KD, Ali J, Campelo D, Barker SC, Raoult D, Drancourt M, 2013. Multiplex real-time PCR diagnostic of relapsing fevers in Africa. PLoS Negl Trop Dis 7: e2042.
Burgdorfer W, 1970. Hemolymph test. A technique for detection of rickettsiae in ticks. Am J Trop Med Hyg 19: 1010–1014.
Parola P, Raoult D, 2001. Ticks and tick borne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32: 897–928.
Mediannikov O, Socolovschi C, Bassene H, Diatta G, Ratmanov P, Fenollar F, Sokhna C, Raoult D, 2014. Borrelia crocidurae infection in acutely febrile patients, Senegal. Emerg Infect Dis 20: 1335–1338.
Parola P, Diatta G, Socolovschi C, Mediannikov O, Tall A, Bassene H, Trape JF, Raoult D, 2011. Tick-borne relapsing fever borreliosis, rural Senegal. Emerg Infect Dis 17: 883–885.
Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG, 2006. Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60: 1329–1343.
Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M, 2008. The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet 4: e1000185.
Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE, Konkel ME, 1996. GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34: 2483–2492.
Haitham E, Gimenez G, Sokhna C, Bilcha K, Ali J, Barker SC, Cutler S, Raoult D, Drancourt M, 2012. Multispacer sequence typing relapsing fever borreliae in Africa. PLoS Negl Trop Dis 6: e1652.
Trape JF, Diatta G, Arnathau C, Bitam I, Sarih M, Belghyti D, Bouattour A, Elguero E, Vial L, Mané Y, Baldé C, Prugnolle F, Chauvancy G, Mahé G, Granjon L, Duplantier JM, Durand P, Renaud F, 2013. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS One 8: e78473.
Vial L, Diatta G, Tall A, Ba El H, Bouganali H, Durand P, Sokhna C, Rogier C, Renaud F, Trape JF, 2006. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 368: 37–43.
Cohen-Bacrie S, Ninove L, Nougaire'de A, Charrel R, Richet H, Minodier P, Badiaga S, Noël G, La Scola B, De Lamballerie X, Drancourt M, Raoult D, 2011. Revolutionizing clinical microbiology laboratory organization in hospitals with in situ point-of-care. PLoS One 6: e22403.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 36 | 36 | 4 |
Full Text Views | 482 | 113 | 0 |
PDF Downloads | 184 | 34 | 0 |
Relapsing fever borreliae, produced by ectoparasite-borne Borrelia species, cause mild to deadly bacteremia and miscarriage. In the perspective of developing inexpensive assays for the rapid detection of relapsing fever borreliae, we produced 12 monoclonal antibodies (MAbs) against Borrelia crocidurae and characterized the two exhibiting the highest titers. P3A10 MAb reacts with the 35.6-kDa flagellin B (flaB) of B. crocidurae while P6D9 MAb recognizes a 35.1-kDa variable-like protein (Vlp) in B. crocidurae and a 35.2-kDa Vlp in Borrelia duttonii. Indirect immunofluorescence assay incorporating relapsing fever and Lyme group borreliae and 11 blood-borne organisms responsible for fever in West Africa confirmed the reactivity of these two MAbs. Combining these two MAbs in indirect immunofluorescence assays detected relapsing fever borreliae including B. crocidurae in ticks and the blood of febrile Senegalese patients. Both antibodies could be incorporated into inexpensive and stable formats suited for the rapid point-of-care diagnosis of relapsing fever. These first-ever MAbs directed against African relapsing fever borreliae are available for the scientific community to promote research in this neglected field.
Authors' addresses: Aurélien Fotso Fotso, Claude Nappez, Saïd Azza, and Didier Raoult, URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix-Marseille Univesité, Marseille, France, E-mails: aurelien74000618@yahoo.fr, claude.nappez@univ-amu.fr, said.azza@univ-amu.fr, and didier.raoult@gmail.com. Oleg Mediannikov, URMITE, UMR 6236, CNRS 7278, IRD 198, INSERM 1095, IFR 48, Méditerranée Infection, Faculté de Médecine, Aix Marseille Université, Marseille, France, and IRD, URMITE UMR198, Campus Communs IRD/UCAD Hann Maristes, Dakar, Senegal, E-mail: olegusss1@gmail.com. Michel Drancourt, Méditerrannée Infection, Aix Marseille Université, Marseille, France, and Unité de Recherche sur les Maladies Infectieuses et Tropicale Émergentes, Marseille, France, E-mail: michel.drancourt@univ-amu.fr.
Haitham E, Raoult D, Drancourt M, 2013. Relapsing fever borreliae in Africa. Am J Trop Med Hyg 89: 288–292.
Fotso Fotso A, Angelakis E, Mouffok N, Drancourt M, Raoult D, 2015. Blood-borne Candidatus Borrelia algerica in a patient with prolonged fever in Oran, Algeria. Am J Trop Med Hyg 93: 1070–1073.
Sokhna C, Mediannikov O, Fenollar F, Bassene H, Diatta G, Tall A, Trape JF, Drancourt M, Raoult D, 2013. Point-of-care laboratory of pathogen diagnosis in rural Senegal. PLoS Negl Trop Dis 7: e1999.
Cutler S, Abdissa A, Trape JF, 2009. New concepts for the old challenge of African relapsing fever borreliosis. Clin Microbiol Infect 15: 400–406.
Fekade D, Knox K, Hussein K, Melka A, Lalloo DG, Coxon RE, Warrell DA, 1996. Prevention of Jarisch-Herxheimer reactions by treatment with antibodies against tumor necrosis factor alpha. N Engl J Med 335: 311–315.
Schwan T, Gage K, Karstens R, Schrumpf M, Hayes S, Barbour AG, 1992. Identification of the tick-borne relapsing fever spirochete Borrelia hermsii by using a species-specific monoclonal antibody. J Clin Microbiol 30: 790–795.
Canica M, Nato F, Du Merle L, Mazie JC, Baranton G, Postic D, 1993. Monoclonal antibodies for identification of Borrelia afzelii sp. nov. associated with late cutaneous manifestations of Lyme borreliosis. Scand J Infect Dis 25: 441–448.
Barbour AG, Tessier SL, Todd WJ, 1983. Lyme disease spirochetes and ixodid tick spirochetes share a common surface antigenic determinant defined by a monoclonal antibody. Infect Immun 41: 795–804.
Barbour AG, Heiland RA, Howe TR, 1985. Heterogeneity of major proteins in Lyme disease borreliae: a molecular analysis of North American and European isolates. J Infect Dis 152: 478–484.
Barbour AG, Tessier SL, Hayes SF, 1984. Variation in a major surface protein of Lyme disease spirochetes. Infect Immun 45: 94–100.
Barbour AG, Hayes SF, Heiland RA, Schrumpf ME, Tessier SL, 1986. A Borrelia-specific monoclonal antibody binds to a flagellar epitope. Infect Immun 52: 549–554.
Köhler G, Milstein C, 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.
D'Acremont V, Kilowoko M, Kyungu E, Philipina S, Sangu W, Kahama-Maro J, Lengeler C, Cherpillod P, Kaiser L, Genton B, 2014. Beyond malaria-causes of fever in outpatient Tanzanian children. N Engl J Med 370: 809–817.
Fotso Fotso A, Mediannikov O, Padmanabhan R, Robert C, Fournier PE, Raoult D, Drancourt M, 2014. Genome sequence of Borrelia crocidurae strain 03-02, a clinical isolate from Senegal. Genome Announc 2: e01150–e14.
Yu Y, Kowalczewska M, Decloquement P, Nappez C, La Scola B, 2006. Production of monoclonal antibodies to Tropheryma whipplei and identification of recognized epitopes by two-dimensional electrophoresis and mass spectrometry. J Clin Microbiol 44: 4179–4185.
Kowalczewska M, Fenollar F, Villard C, Azza S, Roux M, Raoult D, 2008. An immunoproteomic approach for identification of clinical biomarkers of Whipple's disease. Proteomics Clin Appl 2: 504–516.
Renesto P, Samson L, Ogata H, Azza S, Fourquet P, Gorvel JP, Heinzen RA, Raoult D, 2006. Identification of two putative rickettsial adhesins by proteomic analysis. Res Microbiol 157: 605–612.
Kowalczewska M, Fenollar F, Lafitte D, Raoult D, 2006. Identification of candidate antigen in Whipple's disease using a serological proteomic approach. Proteomics 6: 3294–3305.
Renesto P, Azza S, Dolla A, Fourquet P, Vestris G, Gorvel JP, Raoult D, 2005. Rickettsia conorii and R. prowazekii proteome analysis by 2DE-MS: a step toward functional analysis of rickettsial genomes. Ann N Y Acad Sci 1063: 90–93.
Shevchenko A, Wilm M, Vorm O, Mann M, 1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858.
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS, 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551–3567.
Fotso Fotso A, Mediannikov O, Diatta G, Almeras L, Flaudrops C, Parola P, Drancourt M, 2014. MALDI-TOF mass spectrometry detection of pathogens in vectors: The Borrelia crocidurae/Ornithodoros sonrai paradigm. PLoS Negl Trop Dis 8: e2984.
Haitham E, Henry M, Diatta G, Mediannikov O, Sokhna C, Tall A, Socolovschi C, Cutler SJ, Bilcha KD, Ali J, Campelo D, Barker SC, Raoult D, Drancourt M, 2013. Multiplex real-time PCR diagnostic of relapsing fevers in Africa. PLoS Negl Trop Dis 7: e2042.
Burgdorfer W, 1970. Hemolymph test. A technique for detection of rickettsiae in ticks. Am J Trop Med Hyg 19: 1010–1014.
Parola P, Raoult D, 2001. Ticks and tick borne bacterial diseases in humans: an emerging infectious threat. Clin Infect Dis 32: 897–928.
Mediannikov O, Socolovschi C, Bassene H, Diatta G, Ratmanov P, Fenollar F, Sokhna C, Raoult D, 2014. Borrelia crocidurae infection in acutely febrile patients, Senegal. Emerg Infect Dis 20: 1335–1338.
Parola P, Diatta G, Socolovschi C, Mediannikov O, Tall A, Bassene H, Trape JF, Raoult D, 2011. Tick-borne relapsing fever borreliosis, rural Senegal. Emerg Infect Dis 17: 883–885.
Dai Q, Restrepo BI, Porcella SF, Raffel SJ, Schwan TG, Barbour AG, 2006. Antigenic variation by Borrelia hermsii occurs through recombination between extragenic repetitive elements on linear plasmids. Mol Microbiol 60: 1329–1343.
Lescot M, Audic S, Robert C, Nguyen TT, Blanc G, Cutler SJ, Wincker P, Couloux A, Claverie JM, Raoult D, Drancourt M, 2008. The genome of Borrelia recurrentis, the agent of deadly louse-borne relapsing fever, is a degraded subset of tick-borne Borrelia duttonii. PLoS Genet 4: e1000185.
Schwan TG, Schrumpf ME, Hinnebusch BJ, Anderson DE, Konkel ME, 1996. GlpQ: an antigen for serological discrimination between relapsing fever and Lyme borreliosis. J Clin Microbiol 34: 2483–2492.
Haitham E, Gimenez G, Sokhna C, Bilcha K, Ali J, Barker SC, Cutler S, Raoult D, Drancourt M, 2012. Multispacer sequence typing relapsing fever borreliae in Africa. PLoS Negl Trop Dis 6: e1652.
Trape JF, Diatta G, Arnathau C, Bitam I, Sarih M, Belghyti D, Bouattour A, Elguero E, Vial L, Mané Y, Baldé C, Prugnolle F, Chauvancy G, Mahé G, Granjon L, Duplantier JM, Durand P, Renaud F, 2013. The epidemiology and geographic distribution of relapsing fever borreliosis in West and North Africa, with a review of the Ornithodoros erraticus complex (Acari: Ixodida). PLoS One 8: e78473.
Vial L, Diatta G, Tall A, Ba El H, Bouganali H, Durand P, Sokhna C, Rogier C, Renaud F, Trape JF, 2006. Incidence of tick-borne relapsing fever in west Africa: longitudinal study. Lancet 368: 37–43.
Cohen-Bacrie S, Ninove L, Nougaire'de A, Charrel R, Richet H, Minodier P, Badiaga S, Noël G, La Scola B, De Lamballerie X, Drancourt M, Raoult D, 2011. Revolutionizing clinical microbiology laboratory organization in hospitals with in situ point-of-care. PLoS One 6: e22403.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 36 | 36 | 4 |
Full Text Views | 482 | 113 | 0 |
PDF Downloads | 184 | 34 | 0 |