Evidence for an Overwintering Population of Aedes aegypti in Capitol Hill Neighborhood, Washington, DC

Andrew Lima Disease Carrying Insects Program, Fairfax County Health Department, Fairfax, Virginia; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Andrew Lima in
Current site
Google Scholar
PubMed
Close
,
Diane D. Lovin Disease Carrying Insects Program, Fairfax County Health Department, Fairfax, Virginia; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Diane D. Lovin in
Current site
Google Scholar
PubMed
Close
,
Paul V. Hickner Disease Carrying Insects Program, Fairfax County Health Department, Fairfax, Virginia; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by Paul V. Hickner in
Current site
Google Scholar
PubMed
Close
, and
David W. Severson Disease Carrying Insects Program, Fairfax County Health Department, Fairfax, Virginia; Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana; Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana

Search for other papers by David W. Severson in
Current site
Google Scholar
PubMed
Close
Restricted access

Aedes aegypti is an invasive, highly anthropophilic mosquito and a major vector for dengue and chikungunya. Population persistence in the continental United States is reportedly limited to southward of the average 10°C winter isotherm, which in the east, bisects Alabama, Mississippi, Georgia, and South Carolina. We report on summer collections and genotypic analyses of Ae. aegypti collected in the Capitol Hill neighborhood in Washington, DC (WDC). Analysis of a 441-bp fragment of the mitochondrial cytochrome oxidase I gene sequence identified the same two haplotype sequences during 2011–2014, and placed these within two discrete groups known to be derived from lineages resident in the Americas. Analysis of 10 microsatellite loci for specimens collected during 2011–2014 revealed no evidence for introgression of new alleles across years. Overall, our data support a conclusion that this represents a resident WDC population, likely maintained during winter months in a subterranean habitat that facilitates year-round survival.

Author Notes

* Address correspondence to David W. Severson, Department of Biological Sciences, University of Notre Dame, 107C Galvin Life Sciences, Notre Dame, IN 46556. E-mail: severson.1@nd.edu

Authors' addresses: Andrew Lima, Disease Carrying Insects Program, Fairfax County Health Department, Fairfax, VA, E-mail: andrew.lima@fairfaxcounty.gov. Diane D. Lovin, Paul V. Hickner, and David W. Severson, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, E-mails: dlovin@nd.edu, phickner@nd.edu, and severson.1@nd.edu.

  • 1.

    Morens DM, Fauci AS, 2014. Chikungunya at the door—déjà vu all over again? N Engl J Med 371: 885887.

  • 2.

    Anez G, Rios M, 2013. Dengue in the United States of America: a worsening scenario? BioMed Res Int 2013: 678645.

  • 3.

    Eisen L, Moore CG, 2013. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. J Med Entomol 50: 467478.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Campbell LP, Luther C, Moo-Llanes D, Ramsey JM, Danis-Lozano R, Peterson AT, 2015. Climate change influences on global distributions of dengue and chikungunya virus vectors. Phil Trans R Soc B 370: pii: 20140135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Russell BM, Foley PN, Kay BH, 1996. The importance of surface versus subterranean breeding sites for mosquitoes during winter in north Queensland. Arbovirus Res Aust 7: 240242.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Davis NC, 1932. The effects of heat and cold upon Aedes (Stegomyia) aegypti. Am J Hyg 16: 177191.

  • 7.

    Darsie RF, Ward RA, 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University of Florida Press.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, Harker BW, Streit TG, Severson DW, 2009. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. BMC Genomics 10: 590.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hemme RR, Thomas CL, Chadee DD, Severson DW, 2010. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl Trop Dis 4: e634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    EBI, 2014. Clustal Omega. Available at: http://www.ebi.ac.uk.

  • 11.

    VectorBase, 2014. Aedes aegypti. Available at: http://www.vectorbase.org.

  • 12.

    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 27252729.

  • 13.

    Excoffier L, Laval G, Schneider S, 2005. Arlequin ver. 3.5: an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750.

  • 14.

    Pritchard JK, Stephens M, Donnelly P, 2013. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 15.

    Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.

  • 16.

    Moore M, Sylla M, Goss L, Burugu MW, Sang R, Kamau LW, Kenya EU, Bosio C, de Lourdes Munoz M, Sharakova M, Black WC, 2013. Dual African origins of global Aedes aegypti s.l. populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7: e2175.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Mousson L, Dauga C, Garrigues T, Schaffner F, Vazeille M, Failloux AB, 2005. Phylogeography of Aedes (Stegomyia) aegypti (L.) and Aedes (Stegomyia) albopictus (Skuse) (Diptera: Culicidae) based on mitochondrial DNA variations. Genet Res 86: 111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bracco JE, Capurro ML, Lourenco-de-Oliveira R, Sallum MAM, 2007. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence for multiple introductions. Mem Inst Oswaldo Cruz 102: 573580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Damal K, Murrell EG, Juliano SA, Conn JE, Loew SS, 2013. Phylogeography of Aedes aegypti (yellow fever mosquito) in south Florida: mtDNA evidence for human-aided dispersal. Am J Trop Med Hyg 89: 482488.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    NOAA, 2015. Washington D.C. Average Temperatures. Available at: http://www.erh.noaa.gov/lwx/climate/dca/dcatemps.txt. Accessed March 26, 2015.

Past two years Past Year Past 30 Days
Abstract Views 1730 1592 256
Full Text Views 531 14 0
PDF Downloads 199 19 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save