• 1.

    WHO, 2014. World Malaria Report 2014. Geneva, Switzerland: World Health Organization.

  • 2.

    RTS,S Clinical Trials Partnership, 2015. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386: 3145.

    • Search Google Scholar
    • Export Citation
  • 3.

    Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Kone AK, Guindo AB, Traore K, Dicko A, Sagara I, Sissoko MS, Baby M, Sissoko M, Diarra I, Niangaly A, Dolo A, Daou M, Diawara SI, Heppner DG, Stewart VA, Angov E, Bergmann-Leitner ES, Lanar DE, Dutta S, Soisson L, Diggs CL, Leach A, Owusu A, Dubois MC, Cohen J, Nixon JN, Gregson A, Takala SL, Lyke KE, Plowe CV, 2008. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial. PLoS One 3: e1465.

    • Search Google Scholar
    • Export Citation
  • 4.

    Carter R, 2001. Transmission blocking malaria vaccines. Vaccine 19: 23092314.

  • 5.

    Carter R, Mendis KN, Miller LH, Molineaux L, Saul A, 2000. Malaria transmission-blocking vaccines—how can their development be supported? Nat Med 6: 241244.

    • Search Google Scholar
    • Export Citation
  • 6.

    Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traore K, Niangaly A, Djimde AA, Doumbo OK, Plowe CV, 2009. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 1: 2ra5.

    • Search Google Scholar
    • Export Citation
  • 7.

    Bousema JT, Drakeley CJ, Kihonda J, Hendriks JC, Akim NI, Roeffen W, Sauerwein RW, 2007. A longitudinal study of immune responses to Plasmodium falciparum sexual stage antigens in Tanzanian adults. Parasite Immunol 29: 309317.

    • Search Google Scholar
    • Export Citation
  • 8.

    Bousema T, Roeffen W, Meijerink H, Mwerinde H, Mwakalinga S, van Gemert GJ, van de Vegte-Bolmer M, Mosha F, Targett G, Riley EM, Sauerwein R, Drakeley C, 2010. The dynamics of naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs230 and Pfs48/45 in a low endemic area in Tanzania. PLoS One 5: e14114.

    • Search Google Scholar
    • Export Citation
  • 9.

    Barry AE, Arnott A, 2014. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 5: 359.

  • 10.

    Taylor SM, Parobek CM, Aragam N, Ngasala BE, Martensson A, Meshnick SR, Juliano JJ, 2013. Pooled deep sequencing of Plasmodium falciparum isolates: an efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes. J Infect Dis 208: 19982006.

    • Search Google Scholar
    • Export Citation
  • 11.

    Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Greenwood BM, Tagbor H, Williams J, Bojang K, Njie F, Desai M, Kariuki S, Gutman J, Mathanga DP, Martensson A, Ngasala B, Conrad MD, Rosenthal PJ, Tshefu AK, Moormann AM, Vulule JM, Doumbo OK, Ter Kuile FO, Meshnick SR, Bailey JA, Juliano JJ, 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688.

    • Search Google Scholar
    • Export Citation
  • 12.

    Bordbar B, Tuikue Ndam N, Renard E, Jafari-Guemouri S, Tavul L, Jennison C, Gnidehou S, Tahar R, Gamboa D, Bendezu J, Menard D, Barry AE, Deloron P, Sabbagh A, 2014. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect Genet Evol 25: 8192.

    • Search Google Scholar
    • Export Citation
  • 13.

    Outchkourov N, Vermunt A, Jansen J, Kaan A, Roeffen W, Teelen K, Lasonder E, Braks A, van de Vegte-Bolmer M, Qiu LY, Sauerwein R, Stunnenberg HG, 2007. Epitope analysis of the malaria surface antigen pfs48/45 identifies a subdomain that elicits transmission blocking antibodies. J Biol Chem 282: 1714817156.

    • Search Google Scholar
    • Export Citation
  • 14.

    Sharma B, 2008. Structure and mechanism of a transmission blocking vaccine candidate protein Pfs25 from P. falciparum: a molecular modeling and docking study. In Silico Biol 8: 193206.

    • Search Google Scholar
    • Export Citation
  • 15.

    Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, Price RN, Martensson A, Rosenthal PJ, Dorsey G, Sutherland CJ, Guerin P, Davis TM, Menard D, Adam I, Ademowo G, Arze C, Baliraine FN, Berens-Riha N, Bjorkman A, Borrmann S, Checchi F, Desai M, Dhorda M, Djimde AA, El-Sayed BB, Eshetu T, Eyase F, Falade C, Faucher JF, Froberg G, Grivoyannis A, Hamour S, Houze S, Johnson J, Kamugisha E, Kariuki S, Kiechel JR, Kironde F, Kofoed PE, LeBras J, Malmberg M, Mwai L, Ngasala B, Nosten F, Nsobya SL, Nzila A, Oguike M, Otienoburu SD, Ogutu B, Ouedraogo JB, Piola P, Rombo L, Schramm B, Some AF, Thwing J, Ursing J, Wong RP, Zeynudin A, Zongo I, Plowe CV, Sibley CH; WWARN AL and ASAQ Molecular Marker Study Group, 2014. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg 91: 833843.

    • Search Google Scholar
    • Export Citation
  • 16.

    Lin JT, Hathaway NJ, Saunders DL, Lon C, Balasubramanian S, Kharabora O, Gosi P, Sriwichai S, Kartchner L, Chuor CM, Satharath P, Lanteri C, Bailey JA, Juliano JJ, 2015. Using amplicon deep sequencing to detect genetic signatures of Plasmodium vivax relapse. J Infect Dis 212: 9991008.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 

 

 

 

 

Pooled Amplicon Deep Sequencing of Candidate Plasmodium falciparum Transmission-Blocking Vaccine Antigens

View More View Less
  • Division of Infectious Diseases, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Doctor of Medicine/Doctor of Philosophy Program, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Parasitology, School of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania; Institut Pasteur de Madagascar, Antananarivo, Madagascar; Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand; School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo; National Institute of Immunology (NII), Department of Biotechnology, Aruna Asif Ali Marg, New Delhi, India; Department of Medicine, Sriram Chandra Bhanj (S.C.B.) Medical College, Odisha, India; University of North Carolina Project, Lilongwe, Malawi; Malaria Research, Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; International Maternal and Child Health Unit, Uppsala University, Uppsala, Sweden; Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana

Polymorphisms within Plasmodium falciparum vaccine candidate antigens have the potential to compromise vaccine efficacy. Understanding the allele frequencies of polymorphisms in critical binding regions of antigens can help in the designing of strain-transcendent vaccines. Here, we adopt a pooled deep-sequencing approach, originally designed to study P. falciparum drug resistance mutations, to study the diversity of two leading transmission-blocking vaccine candidates, Pfs25 and Pfs48/45. We sequenced 329 P. falciparum field isolates from six different geographic regions. Pfs25 showed little diversity, with only one known polymorphism identified in the region associated with binding of transmission-blocking antibodies among our isolates. However, we identified four new mutations among eight non-synonymous mutations within the presumed antibody-binding region of Pfs48/45. Pooled deep sequencing provides a scalable and cost-effective approach for the targeted study of allele frequencies of P. falciparum candidate vaccine antigens.

Author Notes

* Address correspondence to Jonathan J. Juliano, Department of Medicine, Division of Infectious Diseases, University of North Carolina, CB no. 7030, 130 Mason Farm Road, Chapel Hill, NC 27599. E-mail: jjuliano@med.unc.edu

Financial support: This project was funded by the National Institute for Allergy and Infectious Diseases (NIAID) grant R01AI089819 (JJJ), R21AI101427 (NK), R21 AI103466 (NK), and R01AI107949 (SRM). Christian M. Parobek was supported by the National Institute of General Medicine Sciences T32GM008719, T32GM007092, and F30AI109979. Nicholas F. Brazeau was funded by a grant from the IDSA Medical Scholars Program. David L. Saunders and Chanthap Lon were supported by the U.S. Department of Defense Global Emerging Surveillance Program. Billy Ngasala and Andreas Mårtensson were supported by The Swedish Development Cooperation Agency (SIDA) (Bil-Tz 16/9875007059). Andreas Mårtensson was also supported by The Swedish Medical Research Council (2013-6594). Sample collection in Sainte Marie was financially supported by Institut Pasteur de Madagascar.

Authors' addresses: Jonathan J. Juliano, Nicholas F. Brazeau, and Irving Hoffman, Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, E-mails: jonathan_juliano@med.unc.edu, nbrazeau1@gmail.com, and irving_hoffman@med.unc.edu. Christian M. Parobek, Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, E-mail: christian_parobek@med.unc.edu. Billy Ngasala, Department of Parasitology, Muhimbili University of Health and Allied Sciences, Dar el Salam, United Republic of Tanzania, E-mail: bngasala70@yahoo.co.uk. Milijaona Randrianarivelojosia, Department of Malariology, Institut Pasteur de Madagascar, Antananarivo, Madagascar, E-mail: milijaon@pasteur.mg. Chanthap Lon and David L. Saunders, Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand, E-mails: chanthapl.ca@afrims.org and david.saunders@afrims.org. Kashamuka Mwandagalirwa and Antoinette Tshefu, School of Public Health, University of Kinshasa, Kinshasa, The Democratic Republic of the Congo, E-mails: mkashamuka@yahoo.com and antotshe@yahoo.com. Ravi Dhar, Sushant Lok, Gurgaon, India, E-mail: rdhar_in@yahoo.com. Bidyut K. Das, Department of Medicine, SCB Medical College, Odisha, India, E-mail: bidyutdas@hotmail.com. Francis Martinson, University of North Carolina Project, Lilongwe, Malawi, E-mail: francis_martinson@med.unc.edu. Andreas Mårtensson, Infectious Diseases Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden, E-mail: andreas.martensson@ki.se. Nirbhay Kumar, Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, E-mail: nkumar@tulane.edu. Steven R. Meshnick, Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, E-mail: meshnick@email.unc.edu.

Save