• 1.

    Ergonul O, 2012. Crimean-Congo hemorrhagic fever virus: new outbreaks, new discoveries. Curr Opin Virol 2: 215220.

  • 2.

    Ergonul O, 2006. Crimean-Congo haemorrhagic fever. Lancet Infect Dis 6: 203214.

  • 3.

    Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M, 2013. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antiviral Res 100: 159189.

    • Search Google Scholar
    • Export Citation
  • 4.

    Davies FG, 1997. Nairobi sheep disease. Parassitologia 39: 9598.

  • 5.

    Terpstra C, 1994. Nairobi sheep disease. Coetzer JAW, Thompson GR, Tustin RC, eds. Infectious Diseases of Livestock with Special Reference to Southern Africa. Cape Town, South Africa: Oxford University Press, 718722.

    • Search Google Scholar
    • Export Citation
  • 6.

    Marczinke BI, Nichol ST, 2002. Nairobi sheep disease virus, an important tick-borne pathogen of sheep and goats in Africa, is also present in Asia. Virology 303: 146151.

    • Search Google Scholar
    • Export Citation
  • 7.

    Gong S, He B, Wang Z, Shang L, Wei F, Liu Q, Tu C, 2015. Nairobi sheep disease virus RNA in Ixodid ticks, China, 2013. Emerg Infect Dis 21: 718720.

  • 8.

    Lasecka L, Baron MD, 2014. The molecular biology of nairoviruses, an emerging group of tick-borne arboviruses. Arch Virol 159: 12491265.

    • Search Google Scholar
    • Export Citation
  • 9.

    Casals J, Tignor GH, 1980. The Nairovirus genus: serological relationships. Intervirology 14: 144147.

  • 10.

    Plyusnin A, Beaty BJ, Elliott RM, Goldbach R, Kormelink R, Lundkvist A, Schmaljohn CS, Tesh RB, 2012. Family Bunyaviridae. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, eds. Virus Taxonomy. Ninth Report of the International Committee on Taxonomy of Viruses. Amsterdam, The Netherlands: Elsevier Academic Press, 725741.

    • Search Google Scholar
    • Export Citation
  • 11.

    Honig JE, Osborne JC, Nichol ST, 2004. Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. Virology 321: 2935.

  • 12.

    Marriott AC, Nuttall PA, 1996. Large RNA segment of Dugbe nairovirus encodes the putative RNA polymerase. J Gen Virol 77: 17751780.

  • 13.

    Kinsella E, Martin SG, Grolla A, Czub M, Feldmann H, Flick R, 2004. Sequence determination of the Crimean-Congo hemorrhagic fever virus L segment. Virology 321: 2328.

    • Search Google Scholar
    • Export Citation
  • 14.

    Vincent MJ, Sanchez AJ, Erickson BR, Basak A, Chretien M, Seidah NG, Nichol ST, 2003. Crimean-Congo hemorrhagic fever virus glycoprotein proteolytic processing by subtilase SKI-1. J Virol 77: 86408649.

    • Search Google Scholar
    • Export Citation
  • 15.

    Sanchez AJ, Vincent MJ, Nichol ST, 2002. Characterization of the glycoproteins of Crimean-Congo hemorrhagic fever virus. J Virol 76: 72637275.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sanchez AJ, Vincent MJ, Erickson BR, Nichol ST, 2006. Crimean-Congo hemorrhagic fever virus glycoprotein precursor is cleaved by furin-like and SKI-1 proteases to generate a novel 38-kilodalton glycoprotein. J Virol 80: 514525.

    • Search Google Scholar
    • Export Citation
  • 17.

    Altamura LA, Bertolotti-Ciarlet A, Teigler J, Paragas J, Schmaljohn CS, Doms RW, 2007. Identification of a novel C-terminal cleavage of Crimean-Congo hemorrhagic fever virus preGn that leads to generation of an NSm protein. J Virol 81: 66326642.

    • Search Google Scholar
    • Export Citation
  • 18.

    Wang Y, Dutta S, Karlberg H, Devignot S, Weber F, Hao Q, Tan YJ, Mirazimi A, Kotaka M, 2012. Structure of Crimean-Congo hemorrhagic fever virus nucleoprotein: superhelical homo-oligomers and the role of caspase-3 cleavage. J Virol 86: 1229412303.

    • Search Google Scholar
    • Export Citation
  • 19.

    Guo Y, Wang W, Ji W, Deng M, Sun Y, Zhou H, Yang C, Deng F, Wang H, Hu Z, Lou Z, Rao Z, 2012. Crimean-Congo hemorrhagic fever virus nucleoprotein reveals endonuclease activity in Bunyaviruses. Proc Natl Acad Sci USA 109: 50465051.

    • Search Google Scholar
    • Export Citation
  • 20.

    Karabatsos N, 1985. International Catalogue of Arboviruses Including Certain other Viruses of Vertebrates. San Antonio, TX: American Society for Tropical Medicine and Hygiene.

    • Search Google Scholar
    • Export Citation
  • 21.

    Dilcher M, Koch A, Hasib L, Dobler G, Hufert FT, Weidmann M, 2012. Genetic characterization of Erve virus, a European nairovirus distantly related to Crimean-Congo hemorrhagic fever virus. Virus Genes 45: 426432.

    • Search Google Scholar
    • Export Citation
  • 22.

    Chastel C, Main AJ, Richard P, Le Lay G, Legrand-Quillien MC, Beaucournu JC, 1989. Erve virus, a probable member of Bunyaviridae family isolated from shrews (Crocidura russula) in France. Acta Virol 33: 270280.

    • Search Google Scholar
    • Export Citation
  • 23.

    Zeller HG, Karabatsos N, Calisher CH, Digoutte JP, Cropp CB, Murphy FA, Shope RE, 1989. Electron microscopic and antigenic studies of uncharacterized viruses. II. Evidence suggesting the placement of viruses in the family Bunyaviridae. Arch Virol 108: 211227.

    • Search Google Scholar
    • Export Citation
  • 24.

    Kalunda M, Mukwaya LG, Mukuye A, Lule M, Sekyalo E, Wright J, Casals J, 1986. Kasokero virus: a new human pathogen from bats (Rousettus aegyptiacus) in Uganda. Am J Trop Med Hyg 35: 387392.

    • Search Google Scholar
    • Export Citation
  • 25.

    Dietzgen RG, Calisher CH, Kurath G, Kuzman IV, Rodriguez LL, Stone DM, Tesh RB, Tordo N, Walker PJ, Wetzel T, Whitfield AE, 2012. Rhabdoviridae. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, eds. Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses. San Diego, CA: Elsevier, 654681.

    • Search Google Scholar
    • Export Citation
  • 26.

    Blasdell KR, Guzman H, Widen SG, Firth C, Wood TG, Holmes EC, Tesh RB, Vasilakis N, Walker PJ, 2015. Ledantevirus: a proposed new genus in the Rhabdoviridae has a strong ecological association with bats. Am J Trop Med Hyg 92: 405410.

    • Search Google Scholar
    • Export Citation
  • 27.

    Varma MG, Converse JD, 1976. Keterah virus infections in four species of Argas ticks (Ixodoidea: Argasidae). J Med Entomol 13: 6570.

  • 28.

    Lvov DK, Karas FR, Timofeev EM, Tsyrkin YM, Vargina SG, Veselovskaya OV, Osipova NZ, Grebenyuk YI, Gromashesvki VL, Steblyanko SN, Fomina KB, 1973. “Issyk-Kul” virus, a new arbovirus isolated from bats and Argas (Carios) vespertilionis (Latr., 1802) in the Kirghiz S.S.R. Arch Gesamte Virusforsch 42: 207209.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lvov DK, Kostiukov MA, Daniiarov OA, Tukhtaev TM, Sherikov BK, 1984. Outbreak of arbovirus infection in the Tadzhik SSR due to the Issyk-kul virus (Issyk-kul fever). Vopr Virusol 29: 8992.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ishii A, Ueno K, Orba Y, Sasaki M, Moonga L, Hang'ombe BM, Mweene AS, Umemura T, Ito K, Hall WW, Sawa H, 2014. A nairovirus isolated from African bats causes haemorrhagic gastroenteritis and severe hepatic disease in mice. Nat Commun 5: e5651.

    • Search Google Scholar
    • Export Citation
  • 31.

    Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I, 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19: 11171123.

    • Search Google Scholar
    • Export Citation
  • 32.

    Langmead B, Salzberg SL, 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357359.

  • 33.

    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP, 2011. Integrative genomics viewer. Nat Biotechnol 29: 2426.

  • 34.

    Clarke DH, Casals J, 1958. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am J Trop Med Hyg 7: 561573.

    • Search Google Scholar
    • Export Citation
  • 35.

    Tesh RB, Travassos da Rosa APA, Travassos da Rosa JS, 1983. Antigenic relationship among rhabdoviruses infecting terrestrial vertebrates. J Gen Virol 64: 169176.

    • Search Google Scholar
    • Export Citation
  • 36.

    Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A, 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 16471649.

    • Search Google Scholar
    • Export Citation
  • 37.

    Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O, 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: 307321.

    • Search Google Scholar
    • Export Citation
  • 38.

    Carter SD, Surtees R, Walter CT, Ariza A, Bergeron E, Nichol ST, Hiscox JA, Edwards TA, Barr JN, 2012. Structure, function, and evolution of the Crimean-Congo hemorrhagic fever virus nucleocapsid protein. J Virol 86: 1091410923.

    • Search Google Scholar
    • Export Citation
  • 39.

    Carter SD, Barr JN, Edwards TA, 2012. Expression, purification and crystallization of the Crimean-Congo haemorrhagic fever virus nucleocapsid protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 68: 569573.

    • Search Google Scholar
    • Export Citation
  • 40.

    Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW, 1997. Substrate specificities of caspase family proteases. J Biol Chem 272: 96779682.

    • Search Google Scholar
    • Export Citation
  • 41.

    Karlberg H, Tan YJ, Mirazimi A, 2011. Induction of caspase activation and cleavage of the viral nucleocapsid protein in different cell types during Crimean-Congo hemorrhagic fever virus infection. J Biol Chem 286: 32273234.

    • Search Google Scholar
    • Export Citation
  • 42.

    Capodagli GC, McKercher MA, Baker EA, Masters EM, Brunzelle JS, Pegan SD, 2011. Structural analysis of a viral ovarian tumor domain protease from the Crimean-Congo hemorrhagic fever virus in complex with covalently bonded ubiquitin. J Virol 85: 36213630.

    • Search Google Scholar
    • Export Citation
  • 43.

    Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, Paragas J, Richt JA, Rowland RR, Schmaljohn CS, Lenschow DJ, Snijder EJ, Garcia-Sastre A, Virgin HW 4th, 2007. Ovarian tumor domain-containing viral proteases evade ubiquitin- and ISG15-dependent innate immune responses. Cell Host Microbe 2: 404416.

    • Search Google Scholar
    • Export Citation
  • 44.

    Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P, 2008. Global trends in emerging infectious diseases. Nature 451: 990993.

  • 45.

    Dowall SD, Findlay-Wilson S, Rayner E, Pearson G, Pickersgill J, Rule A, Merredew N, Smith H, Chamberlain J, Hewson R, 2012. Hazara virus infection is lethal for adult type I interferon receptor-knockout mice and may act as a surrogate for infection with the human-pathogenic Crimean-Congo hemorrhagic fever virus. J Gen Virol 93: 560564.

    • Search Google Scholar
    • Export Citation
  • 46.

    Shi X, Kohl A, Leonard VH, Li P, McLees A, Elliott RM, 2006. Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. J Virol 80: 80898099.

    • Search Google Scholar
    • Export Citation
  • 47.

    Briese T, Rambaut A, Lipkin WI, 2004. Analysis of the medium (M) segment sequence of Guaroa virus and its comparison to other orthobunyaviruses. J Gen Virol 85: 30713077.

    • Search Google Scholar
    • Export Citation
  • 48.

    Lees JF, Pringle CR, Elliott RM, 1986. Nucleotide sequence of the Bunyamwera virus M RNA segment: conservation of structural features in the Bunyavirus glycoprotein gene product. Virology 148: 114.

    • Search Google Scholar
    • Export Citation
  • 49.

    Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW, 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98: 62416246.

    • Search Google Scholar
    • Export Citation
  • 50.

    Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ, 2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307: 580584.

    • Search Google Scholar
    • Export Citation
  • 51.

    Crabtree MB, Sang R, Miller BR, 2009. Kupe virus, a new virus in the family Bunyaviridae, genus Nairovirus, Kenya. Emerg Infect Dis 15: 147154.

    • Search Google Scholar
    • Export Citation
  • 52.

    Horne KM, Vanlandingham DL, 2014. Bunyavirus-vector interactions. Viruses 6: 43734397.

  • 53.

    Begum F, Wisseman CL Jr, Casals J, 1970. Tick-borne viruses of West Pakistan. II. Hazara virus, a new agent isolated from Ixodes redikorzevi ticks from the Kaghan Valley, W. Pakistan. Am J Epidemiol 92: 192194.

    • Search Google Scholar
    • Export Citation
  • 54.

    David-West TS, 1973. Dugbe virus: a new tick-borne arbovirus from Nigeria. Trans R Soc Trop Med Hyg 67: 438.

  • 55.

    Lvov DK, Timofeeva AA, Gromashevski VL, Chervonsky VI, Gromov AI, Tsyrkin YM, Pogrebenko AG, Kostyrko IN, 1972. Sakhalin virus—a new arbovirus isolated from Ixodes (Ceratixodes) putus Pick.-Camb. 1878 collected on Tuleniy Island, Sea of Okhotsk. Arch Gesamte Virusforsch 38: 133138.

    • Search Google Scholar
    • Export Citation
  • 56.

    Lvov DK, Al'khovskii SV, Shchelkanov M, Shchetinin AM, Deriabin PG, Aristova VA, Gitel'man AK, Samokhvalov EI, Botikov AG, 2014. Genetic characterization of the Sakhalin virus (SAKV), Paramushir virus (PMRV) (Sakhalin group, Nairovirus, Bunyaviridae), and Rukutama virus (RUKV) (Uukuniemi group, Phlebovirus, Bunyaviridae) isolated from the obligate parasites of the colonial sea-birds ticks Ixodes (Ceratixodes) uriae, White 1852 and I. signatus Birulya, 1895 in the water area of sea of the Okhotsk and Bering sea. Vopr Virusol 59: 1117.

    • Search Google Scholar
    • Export Citation
  • 57.

    Manzano-Román R, Díaz-Martín V, de la Fuente J, Pérez-Sánchez R, 2012. Soft ticks as pathogen vectors: distribution, surveillance and control. Shah MM, ed. Parasitology. Rijeka, Croatia: Intech, 125162.

    • Search Google Scholar
    • Export Citation
  • 58.

    Shepherd AJ, Swanepoel R, Cornel AJ, Mathee O, 1989. Experimental studies on the replication and transmission of Crimean-Congo hemorrhagic fever virus in some African tick species. Am J Trop Med Hyg 40: 326331.

    • Search Google Scholar
    • Export Citation
  • 59.

    Durden LA, Logan TM, Wilson ML, Linthicum KJ, 1993. Experimental vector incompetence of a soft tick, Ornithodoros sonrai (Acari: Argasidae), for Crimean-Congo hemorrhagic fever virus. J Med Entomol 30: 493496.

    • Search Google Scholar
    • Export Citation
  • 60.

    Lvov DK, Sidorova GA, Gromashevsky VL, Kurbanov M, Skvoztsova LM, Gofman YP, Berezina LK, Klimenko SM, Zakharyan VA, Aristova VA, Neronov VM, 1976. Virus “Tamdy”—a new arbovirus, isolated in the Uzbee S.S.R. and Turkmen S.S.R. from ticks Hyalomma asiaticum asiaticum Schulee et Schlottke, 1929, and Hyalomma plumbeum plumbeum Panzer, 1796. Arch Virol 51: 1521.

    • Search Google Scholar
    • Export Citation
  • 61.

    Lvov DK, Sidorova GA, Gromashevskii VL, Skvortsova TM, Berezina LK, 1979. Chim virus, a new arbovirus isolated from ixodid and argasid ticks collected in the burrows of great gerbils on the territory of the Uzbek SSR. Vopr Virusol 24: 286289.

    • Search Google Scholar
    • Export Citation
  • 62.

    Rodovsky FJ, Stiller D, 1967. Descriptive notes on Ornithodoros ticks from gull nests on the Farallon islands and isolation of a variant of Hughes virus. J Parasitol 53: 890892.

    • Search Google Scholar
    • Export Citation
  • 63.

    Converse JD, Hoogstraal H, Moussa MI, Evans DE, 1976. Soldado virus from Ornithodoros (Alectorobius) maritimus (Ixodoidea: Argasidae) infesting herring gull nests on Puffin Island, northern Wales. Acta Virol 20: 243246.

    • Search Google Scholar
    • Export Citation
  • 64.

    Keirans JE, Yunker CE, Clifford CM, Thomas LA, Walton GA, Kelly TC, 1976. Isolation of a Soldado-like virus (Hughes group) from Ornithodorus maritimus ticks in Ireland. Experientia 32: 453454.

    • Search Google Scholar
    • Export Citation
  • 65.

    Converse JD, Moussa MI, Easton ER, Casals J, 1981. Punta Salinas virus (Hughes group) from Argas arboreus (Ixodoidea: Argasidae) in Tanzania. Trans R Soc Trop Med Hyg 75: 755756.

    • Search Google Scholar
    • Export Citation
  • 66.

    Clerx JP, Bishop DH, 1981. Qalyub virus, a member of the newly proposed Nairovirus genus (Bunyavividae). Virology 108: 361372.

  • 67.

    Honig JE, Osborne JC, Nichol ST, 2004. The high genetic variation of viruses of the genus Nairovirus reflects the diversity of their predominant tick hosts. Virology 318: 1016.

    • Search Google Scholar
    • Export Citation
  • 68.

    Alkhovskii SV, Lvov DK, Shchelkanov M, Shchetinin AM, Deriabin PG, Samokhvalov EI, Gitel'man AK, Botikov AG, 2013. The taxonomy of the Issyk-Kul virus (ISKV, Bunyaviridae, Nairovirus), the etiologic agent of the Issyk-Kul fever isolated from bats (Vespertilionidae) and ticks Argas (Carios) vespertilionis (Latreille, 1796). Vopr Virusol 58: 1115.

    • Search Google Scholar
    • Export Citation
  • 69.

    Treib J, Dobler G, Haass A, von Blohn W, Strittmatter M, Pindur G, Froesner G, Schimrigk K, 1998. Thunderclap headache caused by Erve virus? Neurology 50: 509511.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 5 5 5
Full Text Views 1031 690 3
PDF Downloads 262 93 3
 
 
 
 
 
 
 
 
 
 
 

Genomic Characterization of Yogue, Kasokero, Issyk-Kul, Keterah, Gossas, and Thiafora Viruses: Nairoviruses Naturally Infecting Bats, Shrews, and Ticks

Peter J. WalkerCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Peter J. Walker in
Current site
Google Scholar
PubMed
Close
,
Steven G. WidenCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Steven G. Widen in
Current site
Google Scholar
PubMed
Close
,
Cadhla FirthCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Cadhla Firth in
Current site
Google Scholar
PubMed
Close
,
Kim R. BlasdellCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Kim R. Blasdell in
Current site
Google Scholar
PubMed
Close
,
Thomas G. WoodCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Thomas G. Wood in
Current site
Google Scholar
PubMed
Close
,
Amelia P. A. Travassos da RosaCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Amelia P. A. Travassos da Rosa in
Current site
Google Scholar
PubMed
Close
,
Hilda GuzmanCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Hilda Guzman in
Current site
Google Scholar
PubMed
Close
,
Robert B. TeshCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Robert B. Tesh in
Current site
Google Scholar
PubMed
Close
, and
Nikos VasilakisCSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia; Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas; Center for Biodefense and Emerging Infectious Diseases, Department of Pathology, The University of Texas Medical Branch, Galveston, Texas; Center for Tropical Diseases, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, Texas

Search for other papers by Nikos Vasilakis in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

The genus Nairovirus of arthropod-borne bunyaviruses includes the important emerging human pathogen, Crimean–Congo hemorrhagic fever virus (CCHFV), as well as Nairobi sheep disease virus and many other poorly described viruses isolated from mammals, birds, and ticks. Here, we report genome sequence analysis of six nairoviruses: Thiafora virus (TFAV) that was isolated from a shrew in Senegal; Yogue (YOGV), Kasokero (KKOV), and Gossas (GOSV) viruses isolated from bats in Senegal and Uganda; Issyk-Kul virus (IKV) isolated from bats in Kyrgyzstan; and Keterah virus (KTRV) isolated from ticks infesting a bat in Malaysia. The S, M, and L genome segments of each virus were found to encode proteins corresponding to the nucleoprotein, polyglycoprotein, and polymerase protein of CCHFV. However, as observed in Leopards Hill virus (LPHV) and Erve virus (ERVV), polyglycoproteins encoded in the M segment lack sequences encoding the double-membrane-spanning CCHFV NSm protein. Amino acid sequence identities, complement-fixation tests, and phylogenetic analysis indicated that these viruses cluster into three groups comprising KKOV, YOGV, and LPHV from bats of the suborder Yingochiroptera; KTRV, IKV, and GOSV from bats of the suborder Yangochiroptera; and TFAV and ERVV from shrews (Soricomorpha: Soricidae). This reflects clade-specific host and vector associations that extend across the genus.

Author Notes

* Address correspondence to Peter J. Walker, CSIRO Biosecurity, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, Victoria, Australia 3220. E-mail: peter.walker@csiro.au

Financial support: This work was supported in part by NIH contract HHSN272201000040I/HHSN2700004/D4 (Nikos Vasilakis and Robert B. Tesh).

Disclosure: Animal use in this work was done under protocol no. 9505045, approved by the IACUC at the University of Texas Medical Branch.

Authors' addresses: Peter J. Walker, Cadhla Firth, and Kim R. Blasdell, CSIRO Biosecurity, Australian Animal Health Laboratory, Geelong, Victoria, Australia, E-mails: peter.walker@csiro.au, cadhla.firth@csiro.au, and kim.blasdell@csiro.au. Steven G. Widen, Thomas G. Wood, and Robert B. Tesh, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, E-mails: sgwiden@utmb.edu, tgwood@utmb.edu, and rtesh@utmb.edu. Amelia P. A. Travassos da Rosa and Hilda Guzman, Department of Pathology, University of Texas Medical Branch, Galveston, TX, E-mails: aptravas@utmb.edu and hguzman@utmb.edu. Nikos Vasilakis, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, E-mail: nivasila@utmb.edu.

Save