• 1.

    Canducci F, Debiaggi M, Sampaolo M, Marinozzi MC, Berrè S, Terulla C, Gargantini G, Cambieri P, Romero E, Clementi M, 2008. Two-year prospective study of single infections and co-infections by respiratory syncytial virus and viruses identified recently in infants with acute respiratory disease. J Med Virol 80: 716723.

    • Search Google Scholar
    • Export Citation
  • 2.

    Perlman S, Netland J, 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7: 439450.

  • 3.

    Azhar EI, El-Kafrawy SA, Farraj SA, Hassan AM, Al-Saeed MS, Hashem AM, Madani TA, 2014. Evidence for camel-to-human transmission of MERS coronavirus. N Engl J Med 370: 24992505.

    • Search Google Scholar
    • Export Citation
  • 4.

    Hamre D, Procknow JJ, 1966. A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121: 190193.

  • 5.

    Tyrrell DA, Bynoe ML, 1965. Cultivation of a novel type of common-cold virus in organ cultures. BMJ 1: 14671470.

  • 6.

    van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, Wolthers KC, Wertheim-van Dillen PM, Kaandorp J, Spaargaren J, Berkhout B, 2004. Identification of a new human coronavirus. Nat Med 10: 368373.

    • Search Google Scholar
    • Export Citation
  • 7.

    Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, Huang Y, Wong BH, Poon RW, Cai JJ, Luk WK, Poon LL, Wong SS, Guan Y, Peiris JS, Yuen KY, 2005. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79: 884895.

    • Search Google Scholar
    • Export Citation
  • 8.

    Assiri A, Al-Tawfiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al-Barrak A, Flemban H, Al-Nassir WN, Balkhy HH, Al-Hakeem RF, Makhdoom HQ, Zumla AI, Memish ZA, 2013. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome coronavirus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis 13: 752761.

    • Search Google Scholar
    • Export Citation
  • 9.

    Fisman DN, Tuite AR, 2014. The epidemiology of MERS-CoV. Lancet Infect Dis 14: 67.

  • 10.

    van Elden LJ, van Loon AM, van Alphen F, Hendriksen KA, Hoepelman AI, van Kraaij MG, Oosterheert JJ, Schipper P, Schuurman R, Nijhuis M, 2004. Frequent detection of human coronaviruses in clinical specimens from patients with respiratory tract infection by use of a novel real-time reverse-transcriptase polymerase chain reaction. J Infect Dis 189: 652657.

    • Search Google Scholar
    • Export Citation
  • 11.

    Prill MM, Iwane MK, Edwards KM, Williams JV, Weinberg GA, Staat MA, Willby MJ, Talbot HK, Hall CB, Szilagyi PG, Griffin MR, Curns AT, Erdman DD, New Vaccine Surveillance Network, 2012. Human coronavirus in young children hospitalized for acute respiratory illness and asymptomatic controls. Pediatr Infect Dis J 31: 235240.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE, 2010. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol 48: 29402947.

    • Search Google Scholar
    • Export Citation
  • 13.

    Perlman S, Netland J, 2009. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 7: 439450.

  • 14.

    Woo PC, Lau SK, Yip CC, Huang Y, Yuen KY, 2009. More and more coronaviruses: human coronavirus HKU1. Viruses 1: 5771.

  • 15.

    Cabeça TK, Passos AM, Granato C, Bellei N, 2013. Human coronavirus occurrence in different populations of Sao Paulo: a comprehensive nine-year study using a pancoronavirus RT-PCR assay. Braz J Microbiol 44: 335339.

    • Search Google Scholar
    • Export Citation
  • 16.

    Razuri H, Romero C, Tinoco Y, Guezala MC, Ortiz E, Silva M, Reaves E, Williams M, Laguna-Torres VA, Halsey ES, Gomez J, Azziz-Baumgartner E, Widdowson MA, Bresee J, Moen A, Uyeki TM, Bennett A, Montgomery JM, Bausch DG, 2012. Population-based active surveillance cohort studies for influenza: lessons from Peru. Bull World Health Organ 90: 318320.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru

View More View Less
  • United States Naval Medical Research Unit No. 6, Lima, Peru; Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Cologne, Germany; Clinica San Pablo, Lima, Peru; Influenza Division, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia; Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana

We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall–winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

Author Notes

* Address correspondence to Hugo Razuri, Research Institute of the McGill University Health Centre, 687 Pine Avenue Building V Rm V2.08, Quebec, Canada H3A1A1. E-mail: hugo.razuri@clinepi.mcgill.ca

Financial support: This project was partially supported by grants from the Else Kröner-Fresenius-Stiftung, Hesse, Germany, the U.S. Centers for Disease Control and Prevention, Atlanta, GA, and the Armed Forces Health Surveillance Center, Silver Spring, MD.

Copyright statement: Some of the authors of this manuscript are members of the U.S. Military or contractor employee of the U.S. Government. This work was prepared as part of their official duties. Title 17 U.S.C. §105 provides that “Copyright protection under this title is not available for any work of the United States Government.” Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person's official duties.

Authors' addresses: Hugo Razuri, Yeny Tinoco, Ernesto Ortiz, Claudia Guezala, Candice Romero, Abel Estela, Patricia Breña, Maria-Luisa Morales, Erik J. Reaves, and Joel M. Montgomery, Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru, E-mails: hugorazuri@gmail.com, yeny.tinoco@med.navy.mil, ernesto.ortiz@duke.edu, claudia.guezala@med.navy.mil, candice.romero@med.navy.mil, abelestela@gmail.com, patricia.brena.c@gmail.com, malu.morales.fernandez@gmail.com, erikreaves@gmail.com, and jmontgomery@cdc.gov. Monika Malecki, Verena Schildgen, and Oliver Schildgen, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Cologne, Germany, E-mails: maleckim@kliniken-koeln.de, schildgenv@kliniken-koeln.de, and schildgeno@kliniken-koeln.de. Jorge Gomez, Clinica San Pablo, Lima, Peru, E-mail: jlgomezb@gmail.com. Timothy M. Uyeki, Marc-Alain Widdowson, and Eduardo Azziz-Baumgartner, Influenza Division, U.S. Centers for Disease Control and Prevention, Atlanta, GA, E-mails: tmu0@cdc.gov, zux5@cdc.gov, and eha9@cdc.gov. Daniel G. Bausch, Virology and Emerging Infections Department, U.S. Naval Medical Research Unit No. 6, Callao, Peru, and Department of Tropical Medicine, Tulane School of Public Health and Tropical Medicine, New Orleans, LA, E-mail: dbausch@tulane.edu.

Save