Modeling the Present and Future Geographic Distribution of the Lone Star Tick, Amblyomma americanum (Ixodida: Ixodidae), in the Continental United States

Yuri P. Springer Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Yuri P. Springer in
Current site
Google Scholar
PubMed
Close
,
Catherine S. Jarnevich Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Catherine S. Jarnevich in
Current site
Google Scholar
PubMed
Close
,
David T. Barnett Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by David T. Barnett in
Current site
Google Scholar
PubMed
Close
,
Andrew J. Monaghan Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Andrew J. Monaghan in
Current site
Google Scholar
PubMed
Close
, and
Rebecca J. Eisen Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado; U.S. Geological Survey, Fort Collins, Colorado; National Ecological Observatory Network, Inc., Boulder, Colorado; National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Rebecca J. Eisen in
Current site
Google Scholar
PubMed
Close
Restricted access

The Lone star tick (Amblyomma americanum L.) is the primary vector for pathogens of significant public health importance in North America, yet relatively little is known about its current and potential future distribution. Building on a published summary of tick collection records, we used an ensemble modeling approach to predict the present-day and future distribution of climatically suitable habitat for establishment of the Lone star tick within the continental United States. Of the nine climatic predictor variables included in our five present-day models, average vapor pressure in July was by far the most important determinant of suitable habitat. The present-day ensemble model predicted an essentially contiguous distribution of suitable habitat extending to the Atlantic coast east of the 100th western meridian and south of the 40th northern parallel, but excluding a high elevation region associated with the Appalachian Mountains. Future ensemble predictions for 2061–2080 forecasted a stable western range limit, northward expansion of suitable habitat into the Upper Midwest and western Pennsylvania, and range contraction along portions of the Gulf coast and the lower Mississippi river valley. These findings are informative for raising awareness of A. americanum-transmitted pathogens in areas where the Lone Star tick has recently or may become established.

Author Notes

* Address correspondence to Yuri P. Springer, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, 3150 Rampart Road, Fort Collins, CO 80521. E-mail: yurispringer@gmail.com

Financial support: This work was partially supported by the U.S. Centers for Disease Control and Prevention, the U.S. Geological Survey, and the National Center for Atmospheric Research, which is sponsored by the National Science Foundation.

Authors' addresses: Yuri P. Springer and Rebecca J. Eisen, Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Fort Collins, CO, E-mails: yurispringer@gmail.com and dyn2@cdc.gov. Catherine S. Jarnevich, U.S. Geological Survey, Fort Collins, CO, E-mail: jarnevichc@usgs.gov. David T. Barnett, National Ecological Observatory Network, Inc., Boulder, CO, E-mail: dbarnett@neoninc.org. Andrew J. Monaghan, National Center for Atmospheric Research, Boulder, CO, E-mail: monaghan@ucar.edu.

  • 1.

    Parmesan C, 2006. Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37: 637669.

  • 2.

    Chen IC, Hill JK, Ohlemueller R, Roy DB, Thomas CD, 2011. Rapid range shifts of species associated with high levels of climate warming. Science 333: 10241026.

  • 3.

    Parmesan C, Yohe G, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 3742.

  • 4.

    Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA, 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 5760.

  • 5.

    Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR, 2008. Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105: 66686672.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Paaijmans KP, Heinig RL, Seliga RA, Blanford JI, Blanford S, Murdock CC, Thomas MB, 2013. Temperature variation makes ectotherms more sensitive to climate change. Glob Change Biol 19: 23782380.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Gage KL, Burkot TR, Eisen RJ, Hayes EB, 2008. Climate and vectorborne diseases. Am J Prev Med 35: 436450.

  • 8.

    Githeko AK, Lindsay SW, Confalonieri UE, Patz JA, 2000. Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78: 11361147.

  • 9.

    Sutherst RW, 2004. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev 17: 136173.

  • 10.

    Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD, 2013. Climate change and infectious diseases: from evidence to a predictive framework. Science 341: 514519.

  • 11.

    Epstein PR, 2005. Climate change and human health. N Engl J Med 353: 14331436.

  • 12.

    Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD, 2002. Climate warming and disease risks for terrestrial and marine biota. Science 296: 21582162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Rohr JR, Dobson AP, Johnson PTJ, Kilpatrick AM, Paull SH, Raffel TR, Ruiz-Moreno D, Thomas MB, 2011. Frontiers in climate change-disease research. Trends Ecol Evol 26: 270277.

  • 14.

    Rosenthal J, 2009. Climate change and the geographic distribution of infectious diseases. EcoHealth 6: 489495.

  • 15.

    Patz JA, Campbell-Lendrum D, Holloway T, Foley JA, 2005. Impact of regional climate change on human health. Nature 438: 310317.

  • 16.

    Jongejan F, Uilenberg G, 2004. The global importance of ticks. Parasitology 129: S3S14.

  • 17.

    Randolph SE, 2001. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos Trans R Soc Lond B Biol Sci 356: 10451056.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kuehn BM, 2013. CDC estimates 300,000 U.S. cases of Lyme disease annually. JAMA 310: 11101110.

  • 19.

    Bock R, Jackson L, De Vos A, Jorgensen W, 2004. Babesiosis of cattle. Parasitology 129: S247S269.

  • 20.

    McLeod R, Kristjanson P, 1999. TickCost Project—Economic Impacts of Ticks and Tick-Borne Diseases to Livestock in Africa, Asia, and Australia. Final report of joint esys/ILRI/ACIAR. Nairobi, Kenya: International Livestock Research Institute.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Needham GR, Teel PD, 1991. Off-host physiological ecology of Ixodid ticks. Annu Rev Entomol 36: 659681.

  • 22.

    Sauer JR, Hair JA, 1986. Morphology, Physiology, and Behavioral Biology of Ticks. Chichester, United Kingdom: Ellis Horwood Limited, 510.

  • 23.

    Sonenshine DE, Roe RM, 2014. Biology of Ticks. Oxford, United Kingdom: Oxford University Press.

  • 24.

    Brownstein JS, Holford TR, Fish D, 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ Health Perspect 111: 11521157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Ogden NH, Bigras-Poulin M, O'Callaghan CJ, Barker IK, Lindsay LR, Maarouf A, Smoyer-Tomic KE, Waltner-Toews D, Charron D, 2005. A dynamic population model to investigate effects of climate on geographic range and seasonality of the tick Ixodes scapularis. Int J Parasitol 35: 375389.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Eisen L, 2008. Climate change and tick-borne diseases: a research field in need of long-term empirical field studies. Int J Med Microbiol 298: 1218.

  • 27.

    Jaenson TGT, Jaenson DGE, Eisen L, Petersson E, Lindgren E, 2012. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit Vectors 5: 115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Ogden NH, Maarouf A, Barker IK, Bigras-Poulin M, Lindsay LR, Morshed MG, O'Callaghan CJ, Ramay F, Waltner-Toews D, Charron DF, 2006. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int J Parasitol 36: 6370.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ogden NH, Lindsay LR, Morshed M, Sockett PN, Artsob H, 2009. The emergence of Lyme disease in Canada. CMAJ 180: 12211224.

  • 30.

    Randolph SE, 2010. To what extent has climate change contributed to the recent epidemiology of tick-borne diseases? Vet Parasitol 167: 9294.

  • 31.

    Leger E, Vourc'h G, Vial L, Chevillon C, McCoy KD, 2013. Changing distributions of ticks: causes and consequences. Exp Appl Acarol 59: 219244.

  • 32.

    Ogden NH, Mechai S, Margos G, 2013. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity. Front Cell Infect Microbiol 3: 46.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Medlock JM, Hansford KM, Bormane A, Derdakova M, Estrada-Pena A, George JC, Golovljova I, Jaenson TGT, Jensen JK, Jensen PM, Kazimirova M, Oteo JA, Papa A, Pfister K, Plantard O, Randolph SE, Rizzoli A, Santos-Silva MM, Sprong H, Vial L, Hendrickx G, Zeller H, Van Bortel W, 2013. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit Vectors 6: 111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    James A, Burdett C, McCool M, Fox A, Riggs P, 2015. The geographic distribution and ecological preferences of the American dog tick, Dermacentor variabilis (Say), in the USA. Med Vet Entomol 29: 178188.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Porretta D, Mastrantonio V, Amendolia S, Gaiarsa S, Epis S, Genchi C, Bandi C, Otranto D, Urbanelli S, 2013. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasit Vectors 6: 271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Leighton PA, Koffi JK, Pelcat Y, Lindsay LR, Ogden NH, 2012. Predicting the speed of tick invasion: an empirical model of range expansion for the Lyme disease vector Ixodes scapularis in Canada. J Appl Ecol 49: 457464.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ogden NH, St-Onge L, Barker IK, Brazeau S, Bigras-Poulin M, Charron DF, Francis CM, Heagy A, Lindsay LR, Maarouf A, Michel P, Milord F, O'Callaghan CJ, Trudel L, Thompson RA, 2008. Risk maps for range expansion of the Lyme disease vector, Ixodes scapularis, in Canada now and with climate change. Int J Health Geogr 7: 24.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Guisan A, Thuiller W, 2005. Predicting species distribution: offering more than simple habitat models. Ecol Lett 8: 9931009.

  • 39.

    Elith J, Leathwick JR, 2009. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40: 677697.

  • 40.

    Pearson RG, Dawson TP, 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12: 361371.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Hutchinson GE, 1957. Population studies—animal ecology and demography - concluding remarks. Cold Spring Harb Symp Quant Biol 22: 415427.

  • 42.

    Grinnell J, 1917. Field tests of theories concerning distributional control. Am Nat 51: 115128.

  • 43.

    Araujo MB, Guisan A, 2006. Five (or so) challenges for species distribution modelling. J Biogeogr 33: 16771688.

  • 44.

    Araujo MB, Peterson AT, 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 15271539.

  • 45.

    Thomas CD, 2010. Climate, climate change and range boundaries. Divers Distrib 16: 488495.

  • 46.

    Araujo MB, New M, 2007. Ensemble forecasting of species distributions. Trends Ecol Evol 22: 4247.

  • 47.

    Heikkinen RK, Luoto M, Araujo MB, Virkkala R, Thuiller W, Sykes MT, 2006. Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30: 751777.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hair JA, Howell DE, 1970. Lone star ticks: their biology and control in Ozark recreation areas. Okla State Univ Agr Expt Sta Bul B-679: 47.

  • 49.

    Bolte JR, Hair JA, Fletcher J, 1970. White-tailed deer mortality following tissue destruction induced by Lone star ticks. J Wildl Manage 34: 546552.

  • 50.

    Barnard DR, 1985. Injury thresholds and production loss functions for the Lone star tick, Amblyomma americanum (Acari, Ixodidae), on pastured, preweaner beef cattle, Bos taurus. J Econ Entomol 78: 852855.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Childs JE, Paddock CD, 2003. The ascendancy of Amblyomma americanum as a vector of pathogens affecting humans in the United States. Annu Rev Entomol 48: 307337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Goddard J, Varela-Stokes AS, 2009. Role of the Lone star tick, Amblyomma americanum (L.), in human and animal diseases. Vet Parasitol 160: 112.

  • 53.

    Mixson TR, Campbell SR, Gill JS, Ginsberg HS, Reichard MV, Schulze TL, Dasch GA, 2006. Prevalence of Ehrlichia, Borrelia, and Rickettsial agents in Amblyomma americanum (Acari: Ixodidae) collected from nine states. J Med Entomol 43: 12611268.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Paddock CD, Yabsley MJ, 2007. Ecological Havoc, the Rise of White-Tailed Deer, and the Emergence of Amblyomma americanum—Associated Zoonoses in the United States. Wildlife and Emerging Zoonotic Diseases: The Biology, Circumstances and Consequences of Cross-Species Transmission. Heidelberg, Germany: Springer Berlin, 289324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Savage HM, Godsey MS, Lambert A, Panella NA, Burkhalter KL, Harmon JR, Lash RR, Ashley DC, Nicholson WL, 2013. First detection of Heartland virus (Bunyaviridae: Phlebovirus) from field collected arthropods. Am J Trop Med Hyg 89: 445452.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Springer YP, Eisen L, Beati L, James AM, Eisen RJ, 2014. Spatial distribution of counties in the continental United States with records of occurrence of Amblyomma americanum (Ixodida: Ixodidae). J Med Entomol 51: 342351.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Dennis DT, Nekomoto TS, Victor JC, Paul WS, Piesman J, 1998. Reported distribution of Ixodes scapularis and Ixodes pacificus (Acari: Ixodidae) in the United States. J Med Entomol 35: 629638.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A, 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 19651978.

  • 59.

    Gray J, Dautel H, Estrada-Peña A, Kahl O, Lindgren E, 2009. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip Perspect Infect Dis 2009: 593232.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Eisen RJ, Lane RS, Fritz CL, Eisen L, 2006. Spatial patterns of Lyme disease risk in California based on disease incidence data and modeling of vector-tick exposure. Am J Trop Med Hyg 75: 669676.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Thornton PE, Thornton MM, Mayer BW, Wilhelmi N, Wei Y, Devarakonda R, Cook RB, 2014. Daymet: Daily Surface Weather Data on a 1-km Grid for North America; Version 2 Oak Ridge, TN: Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Thornton PE, Thornton MM, Mayer BW, Wilhelmi N, Wei Y, Devarakonda R, Cook R, 2012. Daymet: Daily Surface Weather on a 1 km Grid for North America, 1980–2008. Oak Ridge, TN: Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center for Biogeochemical Dynamics (DAAC).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Moore SM, Eisen RJ, Monaghan A, Mead P, 2014. Meteorological influences on the seasonality of Lyme disease in the United States. Am J Trop Med Hyg 90: 486496.

  • 64.

    Taylor KE, Stouffer RJ, Meehl GA, 2012. An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93: 485498.

  • 65.

    Knutti R, Masson D, Gettelman A, 2013. Climate model genealogy: generation CMIP5 and how we got there. Geophys Res Lett 40: 11941199.

  • 66.

    Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang MH, 2011. The community climate system model version 4. J Clim 24: 49734991.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Bottinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B, 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Sy 5: 572597.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O'Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S, 2011. Development and evaluation of an Earth-System model-HadGEM2. Geosci Model Dev 4: 10511075.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Voldoire A, Sanchez-Gomez E, Melia DSY, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F, 2013. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40: 20912121.