• 1.

    Adams TS, 1999. Hematophagy and hormone release. Ann Entomol Soc Am 92: 113.

  • 2.

    Lehane MJ, 2005. The Biology of Blood-Sucking Insects. Cambridge: Cambridge University Press.

  • 3.

    Garrett-Jones C, 1951. The Congo Floor Maggot, Auchmeromyia luteola (F.), in a laboratory culture. Bull Entomol Res 41: 679708.

  • 4.

    Leak SGA, 1999. Tsetse biology and Ecology: Their Role in the Epidemiology and Control of Trypanosomosis. Wallingford: CABI.

  • 5.

    Zeledón R, Rabinovich JE, 1981. Chagas' disease: an ecological appraisal with special emphasis on its insect vectors. Annu Rev Entomol 26: 101133.

    • Search Google Scholar
    • Export Citation
  • 6.

    Briegel H, 2003. Physiological bases of mosquito ecology. J Vector Ecol 28: 111.

  • 7.

    Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.

    • Search Google Scholar
    • Export Citation
  • 8.

    Clements AN, 1992. The Biology of Mosquitoes: Development, Nutrition, and Reproduction. London: Chapman & Hall.

  • 9.

    Junkum A, Choochote W, Jitpakdi A, Leemingsawat S, Komalamisra N, Jariyapan N, Boonyatakorn C, 2003. Comparative studies on the biology and filarial susceptibility of selected blood-feeding and autogenous Aedes togoi sub-colonies. Mem Inst Oswaldo Cruz 98: 481485.

    • Search Google Scholar
    • Export Citation
  • 10.

    Pawlowski J, Szadziewski R, Kmieciak D, Fahrni J, Bittar G, 1996. Phylogeny of the infraorder Culicomorpha (Diptera: Nematocera) based on 28S RNA gene sequences. Syst Entomol 21: 167178.

    • Search Google Scholar
    • Export Citation
  • 11.

    Spielman A, 1957. The inheritance of autogeny in the Culex pipiens complex of mosquitoes. Am J Hyg 65: 404425.

  • 12.

    Tveten MS, Meola RW, 1988. Autogeny in Culex salinarius from Texas, Florida and New Jersey. J Am Mosq Control Assoc 4: 436441.

  • 13.

    Provost-Javier KN, Chen S, Rasgon JL, 2010. Vitellogenin gene expression in autogenous Culex tarsalis. Insect Mol Biol 19: 423429.

  • 14.

    Sweeney A, Russell R, 1973. Autogeny in Anopheles amictus hilli. Mosq News 33: 467468.

  • 15.

    O'Meara GF, Larson VL, Mook DH, 1993. Blood feeding and autogeny in the peridomestic mosquito Aedes bahamensis (Diptera: Culicidae). J Med Entomol 30: 378383.

    • Search Google Scholar
    • Export Citation
  • 16.

    Mori A, Romero-Severson J, Black WC, Severson DW, 2008. Quantitative trait loci determining autogeny and body size in the Asian tiger mosquito (Aedes albopictus). Heredity 101: 7582.

    • Search Google Scholar
    • Export Citation
  • 17.

    Thomas V, Leng YP, 1972. The inheritance of autogeny in Aedes (Finlaya) togoi (Theobald) from Malaysia and some aspects of its biology. Southeast Asian J Trop Med Public Health 3: 163174.

    • Search Google Scholar
    • Export Citation
  • 18.

    Trpis M, 1977. Autogeny in diverse populations of Aedes aegypti from East Africa. Tropenmed Parasitol 28: 7782.

  • 19.

    Telang A, Li Y, Noriega FG, Brown MR, 2006. Effects of larval nutrition on the endocrinology of mosquito egg development. J Exp Biol 209: 645655.

    • Search Google Scholar
    • Export Citation
  • 20.

    Corbet P, 1967. Facultative autogeny in arctic mosquitoes. Nature 215: 662663.

  • 21.

    Su T, Mulla MS, 1997. Physiological aspects of autogeny in Culex tarsalis (Diptera: Culicidae): influences of sugar-feeding, mating, body weight, and wing length. J Vector Ecol J Soc Vector Ecol 22: 115121.

    • Search Google Scholar
    • Export Citation
  • 22.

    Osei-Poku J, Mbogo CM, Palmer WJ, Jiggins FM, 2012. Deep sequencing reveals extensive variation in the gut microbiota of wild mosquitoes from Kenya. Mol Ecol 21: 51385150.

    • Search Google Scholar
    • Export Citation
  • 23.

    Brown JE, McBride CS, Johnson P, Ritchie S, Paupy C, Bossin H, Lutomiah J, Fernandez-Salas I, Ponlawat A, Cornel AJ, Black WC, Gorrochotegui-Escalante N, Urdaneta-Marquez L, Sylla M, Slotman M, Murray KO, Walker C, Powell JR, 2011. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc Biol Sci 278: 24462454.

    • Search Google Scholar
    • Export Citation
  • 24.

    Van Handel E, Day JF, 1989. Correlation between wing length and protein content of mosquitoes. J Am Mosq Control Assoc 5: 180182.

  • 25.

    Schneider CA, Rasband WS, Eliceiri KW, 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671675.

  • 26.

    Wickham H, 2009. ggplot2: Elegant Graphics for Data Analysis. New York: Springer.

  • 27.

    Zeileis A, Kleiber C, Jackman S, 2008. Regression models for count data in R. J Stat Softw 27: 121.

  • 28.

    Chambers GM, Klowden MJ, 1994. Nutritional reserves of autogenous and anautogenous selected strains of Aedes albopictus (Diptera: Culicidae). J Med Entomol 31: 554560.

    • Search Google Scholar
    • Export Citation
  • 29.

    Kay BH, Edman JD, Mottram P, 1986. Autogeny in Culex annulirostris from Australia. J Am Mosq Control Assoc 2: 1113.

  • 30.

    Vinogradova EB, Karpova SG, 2006. Cultivation of the mosquito Culex pipiens pipiens f. molestus (Diptera, Culicidae) without blood feeding. Parazitologiia 40: 306311.

    • Search Google Scholar
    • Export Citation
  • 31.

    Telang A, Wells MA, 2004. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol 50: 677685.

    • Search Google Scholar
    • Export Citation
  • 32.

    O'Meara GF, Evans DG, 1973. Blood-feeding requirements of the mosquito: geographical variation in Aedes taeniorhynchus. Science 180: 12911293.

    • Search Google Scholar
    • Export Citation
  • 33.

    O'Meara GF, Edman JD, 1975. Autogenous egg production in the salt-marsh mosquito, Aedes taeniorhynchus. Biol Bull 149: 384396.

  • 34.

    O'Meara G, Craig G Jr, 1969. Monofactorial inheritance of autogeny in Aedes atropalpus. Mosq News 29: 1422.

  • 35.

    Brust RA, 1991. Environmental regulation of autogeny in Culex tarsalis (Diptera: Culicidae) from Manitoba, Canada. J Med Entomol 28: 847853.

    • Search Google Scholar
    • Export Citation
  • 36.

    Strickman D, Fonseca DM, 2012. Autogeny in Culex pipiens complex mosquitoes from the San Francisco Bay Area. Am J Trop Med Hyg 87: 719726.

    • Search Google Scholar
    • Export Citation
  • 37.

    Reisen W, Milby M, Bock M, 1984. The effects of immature stress on selected events in the life history of Culex tarsalis. Mosq News 44: 385395.

    • Search Google Scholar
    • Export Citation
  • 38.

    Hansen IA, Attardo GM, Park J-H, Peng Q, Raikhel AS, 2004. Target of rapamycin-mediated amino acid signaling in mosquito anautogeny. Proc Natl Acad Sci USA 101: 1062610631.

    • Search Google Scholar
    • Export Citation
  • 39.

    Attardo GM, Hansen IA, Raikhel AS, 2005. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 35: 661675.

    • Search Google Scholar
    • Export Citation
  • 40.

    Chambers GM, Klowden MJ, 1996. Distention and sugar feeding induce autogenous egg development by the Asian tiger mosquito (Diptera:Culicidae). J Med Entomol 33: 372378.

    • Search Google Scholar
    • Export Citation
  • 41.

    Clifton ME, Noriega FG, 2011. Nutrient limitation results in juvenile hormone-mediated resorption of previtellogenic ovarian follicles in mosquitoes. J Insect Physiol 57: 12741281.

    • Search Google Scholar
    • Export Citation
  • 42.

    Clifton ME, Noriega FG, 2012. The fate of follicles after a blood meal is dependent on previtellogenic nutrition and juvenile hormone in Aedes aegypti. J Insect Physiol 58: 10071019.

    • Search Google Scholar
    • Export Citation
  • 43.

    Sota T, Mogi M, 1994. Seasonal life-cycle and autogeny in the mosquito Aedes togoi in northern Kyushu, Japan, with experimental analysis of the effects of temperature, photoperiod and food on life-history traits. Res Popul Ecol (Kyoto) 36: 105114.

    • Search Google Scholar
    • Export Citation
  • 44.

    Sota T, Mogi M, 1995. Geographic variation in the expression of autogeny in Aedes togoi (Diptera: Culicidae) under different temperature and photoperiod conditions. J Med Entomol 32: 181189.

    • Search Google Scholar
    • Export Citation
  • 45.

    O'Meara GF, Evans DC, 1977. Autogeny in saltmarsh mosquitoes induced by a substance from the male accessory gland. Nature 267: 342344.

 
 
 

 

 

 

 

 

 

Environmental and Genetic Factors Determine Whether the Mosquito Aedes aegypti Lays Eggs Without a Blood Meal

View More View Less
  • Department of Genetics, University of Cambridge, Cambridge, United Kingdom

Some mosquito strains or species are able to lay eggs without taking a blood meal, a trait named autogeny. This may allow populations to persist through times or places where vertebrate hosts are scarce. Autogenous egg production is highly dependent on the environment in some species, but the ideal conditions for its expression in Aedes aegypti mosquitoes are unknown. We found that 3.2% of females in a population of Ae. aegypti from Kenya were autogenous. Autogeny was strongly influenced by temperature, with many more eggs laid at 28°C compared with 22°C. Good nutrition in larval stages and feeding on higher concentrations of sugar solution during the adult stage both result in more autogenous eggs being produced. The trait also has a genetic basis, as not all Ae. aegypti genotypes can lay autogenously. We conclude that Ae. aegypti requires a favorable environment and a suitable genotype to be able to lay eggs without a blood meal.

Author Notes

* Address correspondence to Cristina V. Ariani, Department of Genetics, University of Cambridge, Downing Street, CB2 3EH, Cambridge, United Kingdom. E-mail: cristina.ariani@gmail.com

Financial support: CVA is supported by a Cambridge Overseas Trust Studentship. FMJ is supported by a Royal Society Research Fellowship and ERC grant Drosophila Infection. PJ is supported by ERC grant 281668 Drosophila Infection.

Authors' addresses: Cristina V. Ariani, Sophia C. L. Smith, Katherine Short, Punita Juneja, and Francis M. Jiggins, Department of Genetics, University of Cambridge, Cambridge, UK, E-mails: c.ariani@gen.cam.ac.uk, ss2192@cam.ac.uk, kas214@hotmail.co.uk, p.juneja@gen.cam.ac.uk, and f.jiggins@gen.cam.ac.uk. Jewelna Osei-Poku, Department of Parasitology, Noguchi Memorial Institute for Medical Research, Accra, Ghana, E-mail: j.osei-poku@hotmail.co.uk.

Save