Insect-Specific Viruses Detected in Laboratory Mosquito Colonies and Their Potential Implications for Experiments Evaluating Arbovirus Vector Competence

Bethany G. Bolling Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Bethany G. Bolling in
Current site
Google Scholar
PubMed
Close
,
Nikos Vasilakis Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Nikos Vasilakis in
Current site
Google Scholar
PubMed
Close
,
Hilda Guzman Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Hilda Guzman in
Current site
Google Scholar
PubMed
Close
,
Steven G. Widen Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Steven G. Widen in
Current site
Google Scholar
PubMed
Close
,
Thomas G. Wood Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Thomas G. Wood in
Current site
Google Scholar
PubMed
Close
,
Vsevolod L. Popov Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Vsevolod L. Popov in
Current site
Google Scholar
PubMed
Close
,
Saravanan Thangamani Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Saravanan Thangamani in
Current site
Google Scholar
PubMed
Close
, and
Robert B. Tesh Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Robert B. Tesh in
Current site
Google Scholar
PubMed
Close
Restricted access

Recently, there has been a dramatic increase in the detection and characterization of insect-specific viruses in field-collected mosquitoes. Evidence suggests that these viruses are ubiquitous in nature and that many are maintained by vertical transmission in mosquito populations. Some studies suggest that the presence of insect-specific viruses may inhibit replication of a super-infecting arbovirus, thus altering vector competence of the mosquito host. Accordingly, we screened our laboratory mosquito colonies for insect-specific viruses. Pools of colony mosquitoes were homogenized and inoculated into cultures of Aedes albopictus (C6/36) cells. The infected cells were examined by electron microscopy and deep sequencing was performed on RNA extracts. Electron micrograph images indicated the presence of three different viruses in three of our laboratory mosquito colonies. Potential implications of these findings for vector competence studies are discussed.

Author Notes

* Address correspondence to Bethany G. Bolling, Texas Department of State Health Services, Laboratory Services Section, P.O. Box 149347, Austin, TX 78714-9347. E-mail: Bethany.Bolling@dshs.state.tx.us

Financial support: This study was supported by NIH T-32 training grant A1007536 and by NIH contract HHSN27220100040I/HHSN27200004/DO4.

Authors' addresses: Bethany G. Bolling, Nikos Vasilakis, Hilda Guzman, Steven G. Widen, Thomas G. Wood, Vsevolod L. Popov, Saravanan Thangamani, and Robert B. Tesh, Department of Pathology, University of Texas Medical Branch, Galveston, TX, E-mails: bethanybolling@gmail.com, nivasila@utmb.edu, hguzman@utmb.edu, sgwiden@utmb.edu, tgwood@utmb.edu, vpopov@utmb.edu, sathanga@utmb.edu, and rtesh@utmb.edu. Present address: Bethany G. Bolling, Texas Department of State Health Services, Laboratory Services Section, Austin, TX, E-mail: bethany.bolling@dshs.state.tx.us.

  • 1.

    Weaver SC, Reisen WK, 2010. Present and future arboviral threats. Antiviral Res 85: 328–345.

  • 2.

    Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G, 2011. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332: 855–858.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Glaser RL, Meola MA, 2010. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS ONE 5: e11977.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Hedges LM, Brownlie JC, O'Neill SL, Johnson KN, 2008. Wolbachia and virus protection in insects. Science 322: 702.

  • 5.

    Ramirez JL, Souza-Neto J, Torres Cosme R, Rovira J, Ortiz A, Pascale JM, Dimopoulos G, 2012. Reciprocal tripartite interactions between the Aedes aegypti midgut microbiota, innate immune system and dengue virus influences vector competence. PLoS Negl Trop Dis 6: e1561.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chouaia B, Rossi P, Montagna M, Ricci I, Crotti E, Damiani C, Epis S, Faye I, Sagnon N, Alma A, Favia G, Daffonchio D, Bandi C, 2010. Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. Appl Environ Microbiol 76: 7444–7450.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Terenius O, Lindh JM, Eriksson-Gonzales K, Bussière L, Laugen AT, Bergquist H, Titanji K, Faye I, 2012. Midgut bacterial dynamics in Aedes aegypti. FEMS Microbiol Ecol 80: 556–565.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bishop-Lilly KA, Turell MJ, Willner KM, Butani A, Nolan NM, Lentz SM, Akmal A, Mateczun A, Brahmbhatt TN, Sozhamannan S, Whitehouse CA, Read TD, 2010. Arbovirus detection in insect vectors by rapid, high-throughput pyrosequencing. PLoS Negl Trop Dis 4: e878.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Attoui H, Mohd Jaafar F, Belhouchet M, Biagini P, Cantaloube J-F, de Micco P, de Lamballerie X, 2005. Expansion of family Reoviridae to include nine-segmented dsRNA viruses: isolation and characterization of a new virus designated Aedes pseudoscutellaris reovirus assigned to a proposed genus (Dinovernavirus). Virology 343: 212–223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cook S, Moureau G, Kitchen A, Gould EA, de Lamballerie X, Holmes EC, Harbach RE, 2012. Molecular evolution of the insect-specific flaviviruses. J Gen Virol 93: 223–234.

  • 11.

    Nasar F, Palacios G, Gorchakov RV, Guzman H, Da Rosa AP, Savji N, Popov VL, Sherman MB, Lipkin WI, Tesh RB, Weaver SC, 2012. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication. Proc Natl Acad Sci USA 109: 14622–14627.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Quan P-L, Junglen S, Tashmukhamedova A, Conlan S, Hutchison SK, Kurth A, Ellerbrok H, Egholm M, Briese T, Leendertz FH, Lipkin WI, 2010. Moussa virus: a new member of the Rhabdoviridae family isolated from Culex decens mosquitoes in Côte d'Ivoire. Virus Res 147: 17–24.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Tyler S, Bolling BG, Blair CD, Brault AC, Pabbaraju K, Armijos MV, Clark DC, Calisher CH, Drebot MA, 2011. Distribution and phylogenetic comparisons of a novel mosquito flavivirus sequence present in Culex tarsalis mosquitoes from western Canada with viruses isolated in California and Colorado. Am J Trop Med Hyg 85: 162–168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Vasilakis N, Forrester NL, Palacios G, Nasar F, Savji N, Rossi SL, Guzman H, Wood TG, Popov V, Gorchakov R, González AV, Haddow AD, Watts DM, da Rosa AP, Weaver SC, Lipkin WI, Tesh RB, 2013. Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J Virol 87: 2475–2488.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Marklewitz M, Zirkel F, Rwego IB, Heidemann H, Trippner P, Kurth A, Kallies R, Briese T, Lipkin WI, Drosten C, Gillespie TR, Junglen S, 2013. Discovery of a unique novel clade of mosquito-associated bunyaviruses. J Virol 87: 12850–12865.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Sang RC, Gichogo A, Gachoya J, Dunster MD, Ofula V, Hunt AR, Crabtree MB, Miller BR, Dunster LM, 2003. Isolation of a new flavivirus related to cell fusing agent virus (CFAV) from field-collected flood-water Aedes mosquitoes sampled from a dambo in central Kenya. Arch Virol 148: 1085–1093.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Bolling BG, Eisen L, Moore CG, Blair CD, 2011. Insect-specific flaviviruses from Culex mosquitoes in Colorado, with evidence of vertical transmission. Am J Trop Med Hyg 85: 169–177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Saiyasombat R, Bolling BG, Brault AC, Bartholomay LC, Blitvich BJ, 2011. Evidence of efficient transovarial transmission of Culex flavivirus by Culex pipiens (Diptera: Culicidae). J Med Entomol 48: 1031–1038.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Haddow AD, Guzman H, Popov VL, Wood TG, Widen SG, Haddow AD, Tesh RB, Weaver SC, 2013. First isolation of Aedes flavivirus in the Western Hemisphere and evidence of vertical transmission in the mosquito Aedes (Stegomyia) albopictus (Diptera: Culicidae). Virology 440: 134–139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Bolling BG, Olea-Popelka FJ, Eisen L, Moore CG, Blair CD, 2012. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus. Virology 427: 90–97.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Hobson-Peters J, Yam AW, Lu JW, Setoh YX, May FJ, Kurucz N, Walsh S, Prow NA, Davis SS, Weir R, Melville L, Hunt N, Webb RI, Blitvich BJ, Whelan P, Hall RA, 2013. A new insect-specific flavivirus from northern Australia suppresses replication of West Nile virus and Murray Valley encephalitis virus in co-infected mosquito cells. PLoS ONE 8: e56534.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kent RJ, Crabtree MB, Miller BR, 2010. Transmission of West Nile virus by Culex quinquefasciatus Say infected with Culex Flavivirus Izabal. PLoS Negl Trop Dis 4: e671.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Higgs S, 2005. Care, maintenance, and experimental infection of mosquitoes. Marquardt WC, ed. Biology of Disease Vectors. Second edition. Burlington, MA: Elsevier, 733–739.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I, 2009. ABySS: a parallel assembler for short read sequence data. Genome Res 19: 1117–1123.

  • 25.

    Langmead B, Salzberg SL, 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359.

  • 26.

    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP, 2011. Integrative genomics viewer. Nat Biotechnol 29: 24–26.

  • 27.

    Posada D, Crandall KA, 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817–818.

  • 28.

    Huelsenbeck JP, Ronquist F, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755.

  • 29.

    Ronquist F, Huelsenbeck JP, 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.

  • 30.

    Hoshino K, Isawa H, Tsuda Y, Sawabe K, Kobayashi M, 2009. Isolation and characterization of a new insect flavivirus from Aedes albopictus and Aedes flavopictus mosquitoes in Japan. Virology 391: 119–129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Stollar V, Thomas L, 1975. An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64: 367–377.

  • 32.

    Cook S, Bennett SN, Holmes EC, De Chesse R, Moureau G, de Lamballerie X, 2006. Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 87: 735–748.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Yamanaka A, Thongrungkiat S, Ramasoota P, Konishi E, 2013. Genetic and evolutionary analysis of cell-fusing agent virus based on Thai strains isolated in 2008 and 2012. Infect Genet Evol 19: 188–194.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Roiz D, Vázquez A, Rosso F, Arnoldi D, Girardi M, Cuevas L, Perez-Pastrana E, Sánchez-Seco MP, Tenorio A, Rizzoli A, 2012. Detection of a new insect flavivirus and isolation of Aedes flavivirus in northern Italy. Parasit Vectors 5: 223.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K, 2007. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 359: 405–414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Cirimotich CM, Ramirez JL, Dimopoulos G, 2011. Native microbiota shape insect vector competence for human pathogens. Cell Host Microbe 10: 307–310.

  • 37.

    Weiss B, Aksoy S, 2011. Microbiome influences on insect host vector competence. Trends Parasitol 27: 514–522.

  • 38.

    Ye YH, Woolfit M, Rancès E, O'Neill SL, McGraw EA, 2013. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis 7: e2362.

  • 39.

    Kambris Z, Cook PE, Phuc HK, Sinkins SP, 2009. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science 326: 134–136.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Bian G, Joshi D, Dong Y, Lu P, Zhou G, Pan X, Xu Y, Dimopoulos G, Xi Z, 2013. Wolbachia invades Anopheles stephensi populations and induces refractoriness to Plasmodium infection. Science 340: 748–751.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Newman CM, Cerutti F, Anderson TK, Hamer GL, Walker ED, Kitron UD, Ruiz MO, Brawn JD, Goldberg TL, 2011. Culex flavivirus and West Nile virus mosquito coinfection and positive ecological association in Chicago, United States. Vector Borne Zoonotic Dis 11: 1099–1105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Crockett RK, Burkhalter K, Mead D, Kelly R, Brown J, Varnado W, Roy A, Horiuchi K, Biggerstaff BJ, Miller B, Nasci R, 2012. Culex flavivirus and West Nile virus in Culex quinquefasciatus populations in the southeastern United States. J Med Entomol 49: 165–174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Kenney J, Solberg OD, Langevin SA, Brault AC, 2014. Characterization of a novel insect-specific flavivirus from Brazil: potential for inhibition of infection of arthropod cells with medically important flaviviruses. J Gen Virol. [Epub ahead of print 2014 Aug 21], doi:10.1099/vir.0.068031-0.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Brackney DE, Scott JC, Sagawa F, Woodward JE, Miller NA, Schilkey FD, Mudge J, Wilusz J, Olson KE, Blair CD, Ebel GD, 2010. C6/36 Aedes albopictus cells have a dysfunctional antiviral RNA interference response. PLoS Negl Trop Dis 4: e856.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Kolodziejek J, Pachler K, Bin H, Mendelson E, Shulman L, Orshan L, Nowotny N, 2013. Barkedji virus, a novel mosquito-borne flavivirus identified in Culex perexiguus mosquitoes, Israel, 2011. J Gen Virol 94: 2449–2457.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Zirkel F, Roth H, Kurth A, Drosten C, Ziebuhr J, Junglen S, 2013. Identification and characterization of genetically divergent members of the newly established family Mesoniviridae. J Virol 87: 6346–6358.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1511 1093 74
Full Text Views 554 23 0
PDF Downloads 298 26 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save