Eco-Epidemiology of Chagas Disease in an Endemic Area of Colombia: Risk Factor Estimation, Trypanosoma cruzi Characterization and Identification of Blood-Meal Sources in Bugs

Víctor H. Peña-García Grupo Biología y Control de Enfermedades Infecciosas – BCEI, Universidad de Antioquia UdeA, Medellín, Colombia

Search for other papers by Víctor H. Peña-García in
Current site
Google Scholar
PubMed
Close
,
Andrés M. Gómez-Palacio Grupo Biología y Control de Enfermedades Infecciosas – BCEI, Universidad de Antioquia UdeA, Medellín, Colombia

Search for other papers by Andrés M. Gómez-Palacio in
Current site
Google Scholar
PubMed
Close
,
Omar Triana-Chávez Grupo Biología y Control de Enfermedades Infecciosas – BCEI, Universidad de Antioquia UdeA, Medellín, Colombia

Search for other papers by Omar Triana-Chávez in
Current site
Google Scholar
PubMed
Close
, and
Ana M. Mejía-Jaramillo Grupo Biología y Control de Enfermedades Infecciosas – BCEI, Universidad de Antioquia UdeA, Medellín, Colombia

Search for other papers by Ana M. Mejía-Jaramillo in
Current site
Google Scholar
PubMed
Close
Restricted access

The Sierra Nevada de Santa Marta (SNSM) is a mountainous area in Colombia that is highly endemic to Chagas disease. We explored some eco-epidemiological attributes involved in the Chagas disease transmission scenario in three Indigenous communities. An epidemiological survey was done, where parasite infection in reservoirs and insects, Trypanosoma cruzi genotyping, identification of blood-meal sources in intradomiciliary insects using the high-resolution melting technique, and some risk factors were evaluated. The results suggest that several dwelling conditions such as thatched palm roofs and mud walls carried the highest risk of finding intradomiciliary Rhodnius prolixus, which 56.41% were infected with T. cruzi and fed with human blood. Moreover, T. cruzi Ia was the most frequent haplotype found in insects. These results indicate the existence of a domestic T. cruzi transmission cycle that does not overlap with the sylvatic cycle, and highlight the need for efficient entomological control focused to this area.

Author Notes

* Address correspondence to Omar Triana-Chávez, Calle 70 52-21 Medellín 1226. E-mail: otriana@gmail.com

Financial support: This study was supported by Colciencias project number 111549326149 and Estrategia de Sostenibilidad 2014–2015, Universidad de Antioquia.

Authors' addresses: Victor H. Peña-García, Andrés M. Gómez-Palacio, Omar Triana-Chávez, and Ana M. Mejía-Jaramillo, Grupo Biología y Control de Enfermedades Infecciosas – BCEI Universidad de Antioquia, Medellin, Colombia, E-mails: victorhugopega@gmail.com, amgomezpa@gmail.com, otriana@gmail.com, and anamejia25@gmail.com.

  • 1.

    Zingales B, Andrade SG, Briones MR, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG, Meeting SS, 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104: 10511054.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Cuervo P, Cupolillo E, Segura I, Saravia N, Fernandes O, 2002. Genetic diversity of Colombian sylvatic Trypanosoma cruzi isolates revealed by the ribosomal DNA. Mem Inst Oswaldo Cruz 97: 877880.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Montilla MM, Guhl F, Jaramillo C, Nicholls S, Barnabe C, Bosseno MF, Breniere SF, 2002. Isoenzyme clustering of Trypanosomatidae Colombian populations. Am J Trop Med Hyg 66: 394400.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Triana O, Ortiz S, Dujardin JC, Solari A, 2006. Trypanosoma cruzi: variability of stocks from Colombia determined by molecular karyotype and minicircle southern blot analysis. Exp Parasitol 113: 6266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Zafra G, Mantilla JC, Valadares HM, Macedo AM, González CI, 2008. Evidence of Trypanosoma cruzi II infection in Colombian chagasic patients. Parasitol Res 103: 731734.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Herrera C, Bargues MD, Fajardo A, Montilla M, Triana O, Vallejo GA, Guhl F, 2007. Identifying four Trypanosoma cruzi I isolate haplotypes from different geographic regions in Colombia. Infect Genet Evol 7: 535539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Falla A, Herrera C, Fajardo A, Montilla M, Vallejo GA, Guhl F, 2009. Haplotype identification within Trypanosoma cruzi I in Colombian isolates from several reservoirs, vectors and humans. Acta Trop 110: 1521.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Moncayo A, Silveira AC, 2009. Current epidemiological trends for chagas disease in Latin America and future challenges in epidemiology, surveillance and health policy. Mem Inst Oswaldo Cruz 104 (Suppl 1): 1730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Agudelo LA, Dib JC, Rojas W, Triana-Chavez O, 2005. Epidemiología de la enfermedad de chagas en una comunidad indígena de la Sierra Nevada de Santa Marta, Colombia. Biomedica 25: 113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Parra GJ, Restrepo-Isaza M, Restrepo BN, Domínguez J d D, 2004. Estudio de la tripanosomiasis americana en dos poblados indígenas de la Sierra nevada de Santa Marta. CES Medicina 18: 4350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Rodríguez IB, Botero A, Mejía-Jaramillo AM, Marquez EJ, Ortiz S, Solari A, Triana-Chávez O, 2009. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. Am J Trop Med Hyg 81: 396403.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dib J, Ariza K, Vélez I, Agudelo L, 2000. Dispersion and distribution of triatomine species in the indian communities from the Sierra Nevada of Santa Marta. Medicine IFfT, ed. XV International Congress for Ttropical Medicine and Malaria. Cartagena, Colombia, 84.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Téllez-Meneses J, Mejía-Jaramillo AM, Triana-Chávez O, 2008. Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trop 108: 2634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Ríos-Osorio LA, Crespo-Gonzáles JJ, Zapata-Tamayo MA, 2012. Etnometodología para la comprensión y el manejo de la enfermedad de Chagas en las poblaciones indígenas Wiwa asentadas en la vertiente suroriental de la Sierra Nevada de Santa Marta. Saúde soc. São Paulo 21: 446457.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Angulo VM, Esteban L, 2011. Nueva trampa para la captura de triatominos en hábitats silvestres y peridomésticos. Biomedica 31: 264268.

  • 16.

    Lent H, Wigodzinski P, 1979. Revision of the Triatominae (Hemiptera, Reduviidae) and their significance as vector of chagas disease. Bull Am Mus Nat Hist 163: 123520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular Cloning: A Laboratory Manual. Second edition. New York: Cold Spring Harbor Laboratory Press.

  • 18.

    Moser DR, Kirchhoff LV, Donelson JE, 1989. Detection of Trypanosoma cruzi by DNA amplification using the polymerase chain reaction. J Clin Microbiol 27: 14771482.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cummings KL, Tarleton RL, 2003. Rapid quantitation of Trypanosoma cruzi in host tissue by real-time PCR. Mol Biochem Parasitol 129: 5359.

  • 20.

    Cantillo-Barraza O, Gómez-Palacio A, Salazar D, Mejía-Jaramillo AM, Calle J, Triana O, 2010. Distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en la Isla Margarita del departamento de Bolívar, Colombia. Biomedica 30: 382389.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Souto RP, Fernandes O, Macedo AM, Campbell DA, Zingales B, 1996. DNA markers define two major phylogenetic lineages of Trypanosoma cruzi. Mol Biochem Parasitol 83: 141152.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Brisse S, Verhoef J, Tibayrenc M, 2001. Characterization of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. Int J Parasitol 31: 12181226.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Boakye DA, Tang J, Truc P, Merriweather A, Unnasch TR, 1999. Identification of bloodmeals in haematophagous diptera by cytochrome B heteroduplex analysis. Med Vet Entomol 13: 282287.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Peña VH, Fernández GJ, Gómez-Palacio AM, Mejía-Jaramillo AM, Cantillo O, Triana-Chávez O, 2012. High-resolution melting (HRM) of the cytochrome B gene: a powerful approach to identify blood-meal sources in chagas disease vectors. PLoS Negl Trop Dis 6: e1530.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Guhl F, 2000. Programas en la eliminación de la transmisión de la enfermedad de chagas en Colombia. Medicina (Bogotá) 22: 96104.

  • 26.

    Olifiers N, Gentile R, Fiszon JT, 2005. Relation between small-mammal species composition and anthropic variables in the Brazilian Atlantic Forest. Braz J Biol 65: 495501.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Vallvé SL, Rojo H, Wisnivesky-Colli C, 1996. Urban ecology of Triatoma infestans in San Juan, Argentina. Mem Inst Oswaldo Cruz 91: 405408.

  • 28.

    Grijalva MJ, Escalante L, Paredes RA, Costales JA, Padilla A, Rowland EC, Aguilar HM, Racines J, 2003. Seroprevalence and risk factors for Trypanosoma cruzi infection in the Amazon region of Ecuador. Am J Trop Med Hyg 69: 380385.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Serrano O, Mendoza F, Suárez B, Soto A, 2008. Seroepidemiology of chagas disease in two rural populations in the municipality of Costa de Oro, at Aragua State, northern Venezuela. Biomedica 28: 108115.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mantilla JC, Zafra GA, Macedo AM, González CI, 2010. Mixed infection of Trypanosoma cruzi I and II in a Colombian cardiomyopathic patient. Hum Pathol 41: 610613.

  • 31.

    Devera R, Fernandes O, Coura JR, 2003. Should Trypanosoma cruzi be called “cruzi” complex? A review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection. Mem Inst Oswaldo Cruz 98: 112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tomasini N, Lauthier JJ, Monje Rumi MM, Ragone PG, Alberti D'Amato AA, Pérez Brandan C, Cura CI, Schijman AG, Barnabé C, Tibayrenc M, Basombrío MA, Falla A, Herrera C, Guhl F, Diosque P, 2011. Interest and limitations of Spliced Leader Intergenic Region sequences for analyzing Trypanosoma cruzi I phylogenetic diversity in the Argentinean Chaco. Infect Genet Evol 11: 300307.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Herrera CP, Barnabé C, Brenière SF, 2013. Complex evolutionary pathways of the intergenic region of the mini-exon gene in Trypanosoma cruzi TcI: a possible ancient origin in the Gran Chaco and lack of strict genetic structuration. Infect Genet Evol 16: 2737.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Enger KS, Ordoñez R, Wilson ML, Ramsey JM, 2004. Evaluation of risk factors for rural infestation by Triatoma pallidipennis (Hemiptera: Triatominae), a Mexican vector of chagas disease. J Med Entomol 41: 760767.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Gurtler RE, Cecere MC, Rubel DN, Schweigmann NJ, 1992. Determinants of the domiciliary density of Triatoma infestans, vector of chagas disease. Med Vet Entomol 6: 7583.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Gurtler RE, Petersen RM, Cecere MC, Schweigmann NJ, Chuit R, Gualtieri JM, Wisnivesky-Colli C, 1994. Chagas disease in north-west Argentina: risk of domestic reinfestation by Triatoma infestans after a single community-wide application of deltamethrin. Trans R Soc Trop Med Hyg 88: 2730.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Mott KE, Muniz TM, Lehman JS, Hoff R, Morrow RH, de Oliveira TS, Sherlock I, Draper CC, 1978. House construction, triatomine distribution, and household distribution of seroreactivity to Trypanosoma cruzi in a rural community in northeast Brazil. Am J Trop Med Hyg 27: 11161122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Walter A, Rego IP, Ferreira AJ, Rogier C, 2005. Risk factors for reinvasion of human dwellings by sylvatic triatomines in northern Bahia State, Brazil. Cad Saude Publica 21: 974978.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Campbell-Lendrum DH, Angulo VM, Esteban L, Tarazona Z, Parra GJ, Restrepo M, Restrepo BN, Guhl F, Pinto N, Aguilera G, Wilkinson P, Davies CR, 2007. House-level risk factors for triatomine infestation in Colombia. Int J Epidemiol 36: 866872.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hoyos R, Pacheco L, Agudelo LA, Zafra G, Blanco P, Triana O, 2007. Seroprevalence of chagas disease and associated risk factors in a population of Morroa, Sucre. Biomedica 27 (Suppl 1): 130136.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Gaunt M, Miles M, 2000. The ecotopes and evolution of triatomine bugs (triatominae) and their associated trypanosomes. Mem Inst Oswaldo Cruz 95: 557565.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Abad-Franch F, Palomeque FS, Aguilar HM, Miles MA, 2005. Field ecology of sylvatic Rhodnius populations (Heteroptera, Triatominae): risk factors for palm tree infestation in western Ecuador. Trop Med Int Health 10: 12581266.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Feliciangeli MD, Sánchez-Martín MJ, Suárez B, Marrero R, Torrellas A, Bravo A, Medina M, Martínez C, Hernandez M, Duque N, Toyo J, Rangel R, 2007. Risk factors for Trypanosoma cruzi human infection in Barinas State, Venezuela. Am J Trop Med Hyg 76: 915921.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Feliciangeli MD, Sanchez-Martin M, Marrero R, Davies C, Dujardin JP, 2007. Morphometric evidence for a possible role of Rhodnius prolixus from palm trees in house re-infestation in the State of Barinas (Venezuela). Acta Trop 101: 169177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Pinto N, Marin D, Herrera C, Vallejo G, Naranjo J, Guhl F, 2005. Comprobación del ciclo selvático de Rhodnius prolixus Stål en reductos de Attalea butyracea en el departamento de Casanare. Biomedica 25: 159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Guhl F, Pinto N, Aguilera G, 2009. Sylvatic triatominae: a new challenge in vector control transmission. Mem Inst Oswaldo Cruz 104 (Suppl 1): 7175.

Past two years Past Year Past 30 Days
Abstract Views 1652 1467 52
Full Text Views 498 11 1
PDF Downloads 164 15 1
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save