• 1.

    Perry RD, Fetherston JD, 1997. Yersinia pestis—etiologic agent of plague. Clin Microbiol Rev 10: 3566.

  • 2.

    Anisimov AP, Lindler LE, Pier GB, 2004. Intraspecific diversity of Yersinia pestis. Clin Microbiol Rev 17: 434464.

  • 3.

    Butler T, 2009. Plague into the 21st century. Clin Infect Dis 49: 736742.

  • 4.

    Parkhill J, Wren BW, Thomson NR, Titball RW, Holden TG, Prentice MB, Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeño-Tárraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougank G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston CF, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG, 2001. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413: 523527.

    • Search Google Scholar
    • Export Citation
  • 5.

    Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E, 1999. Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 96: 1404314048.

    • Search Google Scholar
    • Export Citation
  • 6.

    Chain SG, Carniel E, Larimer W, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheux D, Elliott JM, Derbise A, Hauser LJ, Garcia E, 2004. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci USA 101: 1382613831.

    • Search Google Scholar
    • Export Citation
  • 7.

    Song Y, Tong Z, Wang J, Wang L, Guo Z, Han Y, Zhang J, Pei D, Zhou D, Qin H, Pang X, Han Y, Zhai J, Li M, Cui B, Qi Z, Jin L, Dai R, Chen F, Li S, Ye C, Du Z, Lin W, Wang J, Yu J, Yang H, Wang J, Huang P, Yang R, 2004. Complete genome sequence of Yersinia pestis strain 91001, an isolate avirulent to humans. DNA Res 11: 179197.

    • Search Google Scholar
    • Export Citation
  • 8.

    Deng W, Burland V, Plunkett G III, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, Schwartz DC, Fetherston JD, Lindler LE, Brubaker RR, Plano GV, Straley SC, McDonough KA, Nilles ML, Matson JS, Blattner FR, Perry RD, 2002. Genome sequence of Yersinia pestis KIM. J Bacteriol 184: 46014611.

    • Search Google Scholar
    • Export Citation
  • 9.

    Chain SG, Hu P, Malfatti SA, Radnedge L, Larimer F, Vergez LM, Worsham P, Chu MC, Andersen GL, 2006. Complete genome sequence of Yersinia pestis strains Antiqua and Nepal516: evidence of gene reduction in an emerging pathogen. J Bacteriol 188: 44534463.

    • Search Google Scholar
    • Export Citation
  • 10.

    Eppinger M, Worsham PL, Nikolich MP, Riley DR, Sebastian Y, Mou S, Achtman M, Lindler LE, Ravel J, 2010. Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium. J Bacteriol 192: 16851699.

    • Search Google Scholar
    • Export Citation
  • 11.

    Shen X, Wang Q, Xia L, Zhu X, Zhang Z, Liang Y, Cai H, Zhang E, Wei J, Chen C, Song Z, Zhang H, Yu D, Hai R, 2010. Complete genome sequences of Yersinia pestis from natural foci in China. J Bacteriol 192: 35513552.

    • Search Google Scholar
    • Export Citation
  • 12.

    Liang Y, Hou X, Wang Y, Cui Z, Zhang Z, Zhu X, Xia L, Shen X, Cai H, Wang J, Xu D, Zhang E, Zhang H, Wei J, He J, Song Z, Yu X, Yu D, Hai R, 2010. Genome rearrangements of completely sequenced strains of Yersinia pestis. J Clin Microbiol 48: 16191623.

    • Search Google Scholar
    • Export Citation
  • 13.

    Darling AE, Mau B, Blattner FR, Perna NT, 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: 13941403.

    • Search Google Scholar
    • Export Citation
  • 14.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990. Basic local alignment search tool. J Mol Biol 215: 403410.

  • 15.

    Li Y, Dai E, Cui Y, Li M, Zhang Y, Wu M, Zhou D, Guo Z, Dai X, Cui B, Qi Z, Wang Z, Wang H, Dong X, Song Z, Zhai J, Song Y, Yang R, 2008. Different region analysis for genotyping Yersinia pestis isolates from China. PLoS ONE 3: e2166.

    • Search Google Scholar
    • Export Citation
  • 16.

    Darling AE, Miklos I, Ragan MA, 2008. Dynamics of genome rearrangement in bacterial populations. PLoS Genet 4: e1000128.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chromosomal Rearrangement Features of Yersinia pestis Strains from Natural Plague Foci in China

View More View Less
  • State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping District, Beijing, China; Qinghai Institute for Endemic Disease Control and Prevention, Xining, China

The Yersinia pestis chromosome contains a large variety and number of insert sequences that have resulted in frequent chromosome rearrangement events. To identify the chromosomal rearrangement features of Y. pestis strains from five typical plague foci in China and study spontaneous DNA rearrangements potentially stabilized in certain lineages of Y. pestis genomes, we examined the linking mode of locally collinear blocks (LCBs) in 30 Y. pestis strains by a polymerase chain reaction-based method. Our results suggest most strains have relatively stable chromosomal arrangement patterns, and these rearrangement characteristics also have a very close relationship with the geographical origin. In addition, some LCB linking modes are only present in specific strains. We conclude Y. pestis chromosome rearrangement patterns may reflect the genetic features of specific geographical areas and can be applied to distinguish Y. pestis isolates; furthermore, most of the rearrangement events are stable in certain lineages of Y. pestis genomes.

Author Notes

* Address correspondence to Rong Hai, 155 Changbai Road, Changping District, Beijing 102206, China. E-mail: hairong@icdc.cn† These authors contributed equally to this work.

Financial support: This work was supported by a grant (award 201202021) from the Special Fund for Health Sector, People's Republic of China, and grant (2012ZX10004215) from the National Key Programs for Infectious Diseases of China.

Authors' addresses: Ying Liang, Fang Xie, Enmin Zhang, Zhikai Zhang, Hong Cai, Yanhua Wang, Xiaona Shen, Hongqun Zhao, Dongzheng Yu, Lianxu Xia, and Rong Hai, State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, E-mails: liangying@icdc.cn, 513596429@qq.com, zhangenmin@icdc.cn, zhangzhikai@icdc.cn, caihong@icdc.cn, wangyanhua@icdc.cn, shenxiaona@icdc.cn, zhaohongqun@icdc.cn, yudongzheng@icdc.cn, xialianxu@icdc.cn, and hairong@icdc.cn. Xinyuan Tang and Mei Wang, Qinghai Institute for Endemic Disease Control and Prevention, Xining, China, E-mails: tang19790624@126.com and wangmei19790624@126.com.

Save