Standardization of a TaqMan-Based Real-Time PCR for the Detection of Mycobacterium tuberculosis-Complex in Human Sputum

Francesca Barletta Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Perú; Infectious Diseases and Immunity, Imperial College London, and Wellcome Trust Imperial College Centre for Global Health, London,United Kingdom; IFHAD: Innovation For Health And Development, London, United Kingdom; Institute of Tropical Medicine, Antwerp-Belgium; University of Antwerp, Belgium

Search for other papers by Francesca Barletta in
Current site
Google Scholar
PubMed
Close
,
Koen Vandelannoote Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Perú; Infectious Diseases and Immunity, Imperial College London, and Wellcome Trust Imperial College Centre for Global Health, London,United Kingdom; IFHAD: Innovation For Health And Development, London, United Kingdom; Institute of Tropical Medicine, Antwerp-Belgium; University of Antwerp, Belgium

Search for other papers by Koen Vandelannoote in
Current site
Google Scholar
PubMed
Close
,
Jimena Collantes Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Perú; Infectious Diseases and Immunity, Imperial College London, and Wellcome Trust Imperial College Centre for Global Health, London,United Kingdom; IFHAD: Innovation For Health And Development, London, United Kingdom; Institute of Tropical Medicine, Antwerp-Belgium; University of Antwerp, Belgium

Search for other papers by Jimena Collantes in
Current site
Google Scholar
PubMed
Close
,
Carlton A. Evans Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Perú; Infectious Diseases and Immunity, Imperial College London, and Wellcome Trust Imperial College Centre for Global Health, London,United Kingdom; IFHAD: Innovation For Health And Development, London, United Kingdom; Institute of Tropical Medicine, Antwerp-Belgium; University of Antwerp, Belgium

Search for other papers by Carlton A. Evans in
Current site
Google Scholar
PubMed
Close
,
Jorge Arévalo Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Perú; Infectious Diseases and Immunity, Imperial College London, and Wellcome Trust Imperial College Centre for Global Health, London,United Kingdom; IFHAD: Innovation For Health And Development, London, United Kingdom; Institute of Tropical Medicine, Antwerp-Belgium; University of Antwerp, Belgium

Search for other papers by Jorge Arévalo in
Current site
Google Scholar
PubMed
Close
, and
Leen Rigouts Instituto de Medicina Tropical Alexander von Humboldt, Lima, Peru; Universidad Peruana Cayetano Heredia, Lima, Perú; Infectious Diseases and Immunity, Imperial College London, and Wellcome Trust Imperial College Centre for Global Health, London,United Kingdom; IFHAD: Innovation For Health And Development, London, United Kingdom; Institute of Tropical Medicine, Antwerp-Belgium; University of Antwerp, Belgium

Search for other papers by Leen Rigouts in
Current site
Google Scholar
PubMed
Close
Restricted access

Real-time polymerase chain reaction (qPCR) was optimized for detecting Mycobacterium tuberculosis in sputum. Sputum was collected from patients (N = 112) with suspected pulmonary tuberculosis, tested by smear microscopy, decontaminated, and split into equal aliquots that were cultured in Löwenstein-Jensen medium and tested by qPCR for the small mobile genetic element IS6110. The human ERV3 sequence was used as an internal control. 3 of 112 (3%) qPCR failed. For the remaining 109 samples, qPCR diagnosed tuberculosis in 79 of 84 patients with culture-proven tuberculosis, and sensitivity was greater than microscopy (94% versus 76%, respectively, P < 0.05). The qPCR sensitivity was similar (P = 0.9) for smear-positive (94%, 60 of 64) and smear-negative (95%, 19 of 20) samples. The qPCR was negative for 24 of 25 of the sputa with negative microscopy and culture (diagnostic specificity 96%). The qPCR had 99.5% sensitivity and specificity for 211 quality control samples including 84 non-tuberculosis mycobacteria. The qPCR cost ∼5US$ per sample and provided same-day results compared with 2–6 weeks for culture.

Author Notes

* Address correspondence to Francesca Barletta, Instituto de Medicina Tropical Alexander von Humboldt Molecular Epidemiology Unit - TB Av. Honorio Delgado No, 430, San Martin de Porres. E-mail: francescabarletta@yahoo.es

Financial support: This study was funded by the Belgian Directorate-General for Development Cooperation (DGDC) through an institutional collaboration between the Institute of Tropical Medicine in Antwerp, Belgium and the Instituto de Medicina Tropical Alexander von Humboldt in Lima, Peru. CAE and some sample collection and microbiology were funded by the Wellcome Trust and the charity IFHAD: Innovation For Health And Development. CAE acknowledges support from the Imperial College Biomedical Research Centre and by the Joint Global Health Trials consortium (MRC, DFID, and Wellcome Trust).

Authors' addresses: Francesca Barletta, Instituto de Medicina Tropical Alexander von Humboldt Molecular Epidemiology, Lima, Peru, E-mail: francescabarletta@yahoo.es. Koen Vandelannoote, Prince Leopold Institute of Tropical Medicine, Mycobacteriology, Antwerp, Belgium, E-mail: kvandelannoote@itg.be. Jimena Collantes and Jorge Arévalo, Universidad Peruana Cayetano Heredia, Instituto de Medicina Tropical Lima, Lima, Peru, and Epidemiologia Molecular, Lima, Peru, E-mails: jimenacollantes@hotmail.com and biomoljazz@gmail.com. Carlton A. Evans, Imperial College, Department of Infectious Disease and Immunity, Wellcome Centre for Tropical Medicine, London, UK, E-mail: carlton.evans@ifhad.org. Leen Rigouts, University of Antwerp, BMW, Antwerp, Belgium, E-mail: lrigouts@itg.be.

  • 1.

    Master RN, section editor, 1992. Microbiology. Clinical Microbiology Procedures Handbook. Volume I. Washington, DC: ASM.

  • 2.

    Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, Cunningham J, Urbanczik R, Perkins MD, Aziz MA, Pai M, 2006. Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis 6: 664674, Review.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Katila ML, Katila P, Erkinjuntti-Pekkanen R, 2000. Accelerated detection and identification of Mycobacteria with MGIT 960 and COBAS AMPLICOR Systems. J Clin Microbiol 38: 960964.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Morán Mogue MC, Hernández DA, Pena Montes de Oca PM, Gallegos Arreola MP, Flores Martínez SE, Montoya Fuentes H, Figuera LE, Villa Manzanares L, Sánchez Corona J, 2000. Detección de Mycobacterium tuberculosis mediante la reacción en cadena de la polimerasa en una población seleccionada del noroccidente de México. Rev Panam Salud Publica 7: 389394.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Parimango D, Chávez M, Luján M, Otiniano M, Robles H, Muñoz E, 2007. Comparación de los medios Ogawa y Löwenstein-Jensen en el aislamiento de Mycobacterium tuberculosis de pacientes con tuberculosis pulmonar. Hospital Regional Docente de Trujillo, Perú. Rev. Med. Vallejiana 4: 2431.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Ling DI, Flores LL, Riley LW, Pai M, 2008. Commercial nucleic-acid amplification tests for diagnosis of pulmonary tuberculosis in respiratory specimens: meta-analysis and meta-regression. PLoS One 3: e1536.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Flores LL, Pai M, Colford JM Jr, Riley LW, 2005. In-house nucleic acid amplification tests for the detection of Mycobacterium tuberculosis in sputum specimens: meta-analysis and meta-regression. BMC Microbiol 5: 5563.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Moure R, Muñoz L, Torres M, Santin M, Martín R, Alcaide F, 2011. Rapid detection of Mycobacterium tuberculosis complex and rifampin resistance in smear-negative clinical samples by use of an integrated real-time PCR method. J Clin Microbiol 49: 11371139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Yuan CC, Miley W, Waters D, 2001. A quantification of human cells using an ERV-3 real time PCR assay. J Virol Methods 91: 109117.

  • 10.

    Van Embden JDA, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM, Small PM, 1993. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31: 406409.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Käser M, Ruf MT, Huaser J, Marsollier L, Pluschke G, 2009. Optimized method for preparation of DNA from pathogenic and environmental Mycobacteria. Appl Environ Microbiol 75: 414418.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Palomino JC, 2006. Newer diagnostics for tuberculosis and multidrug resistant tuberculosis. Curr Opin Pulm Med 12: 172178.

  • 13.

    Somoskovi A, Hotaling JE, Fitzgerald M, O'Donnell D, Parsons LM, Salfinger M, 2001. Lessons from a proficiency testing event for acid-fast microscopy. Chest 120: 250257.

  • 14.

    Van Deun A, Hamid Salim A, Aung KJ, Hossain MA, Chambugonj N, Hye MA, Kawria A, Declercq E, 2005. Performance of variations of caebolfuchsin staining of sputum for AFB under field conditions. Int J Tuberc Lung Dis 9: 11271133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Ricaldi JN, Guerra H, 2008. A simple and improved method for diagnosis of tuberculosis using hypertonic saline and sodium hydroxide (HS–SH) to concentrate and decontaminate sputum. Trop Doct 38: 9799.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Altamirano M, Kelly MT, Wong A, Bessuille ET, Black WA, Smith JA, 1992. Characterization of a DNA probe for detection of Mycobacterium tuberculosis complex in clinical samples by polymerase chain reaction. J Clin Microbiol 30: 21732176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Beige J, Lokies J, Schaberg T, Finckh U, Fischer M, Mauch H, Lode H, Köhler B, Rolfs A, 1995. Clinical evaluation of a Mycobacterium tuberculosis PCR assay. J Clin Microbiol 33: 9095.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Clarridge JE 3rd, Shawar RM, Shinnick TM, Plikaytis BB, 1993. Large-scale use of polymerase chain reaction for detection of Mycobacterium tuberculosis in a routine mycobacteriology laboratory. J Clin Microbiol 31: 20492056.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cousins DV, Wilton SD, Francis BR, Gow BL, 1992. Use of polymerase chain reaction for rapid diagnosis of tuberculosis. J Clin Microbiol 30: 255258.

  • 20.

    Eisenach KD, Cave MD, Bates JH, Crawford JT, 1990. Polymerase chain reaction amplification of a repetitive DNA sequence specific for Mycobacterium tuberculosis. J Infect Dis 161: 977981.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Folgueira L, Delgado R, Palenque E, Noriega AR, 1993. Detection of Mycobacterium tuberculosis DNA in clinical samples by using a simple lysis method and polymerase chain reaction. J Clin Microbiol 31: 10191021.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kocagöz T, Yilmaz E, Ozkara S, Kocagöz S, Hayran M, Sachedeva M, Chambers HF, 1993. Detection of Mycobacterium tuberculosis in sputum samples by polymerase chain reaction using a simplified procedure. J Clin Microbiol 31: 14351438.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kox LF, Rhienthong D, Miranda AM, Udomsantisuk N, Ellis K, van Leeuwen J, van Heusden S, Kuijper S, Kolk AH, 1994. A more reliable PCR for detection of Mycobacterium tuberculosis in clinical samples. J Clin Microbiol 32: 672678.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Moore DF, Curry JL, 1995. Detection and identification of Mycobacterium tuberculosis directly from sputum sediments by Amplicor PC. J Clin Microbiol 33: 26862691.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Beqaj SH, Flesher R, Walker GR, Smith SA, 2007. Use of the real-time PCR assay in conjunction with MagNA Pure for the detection of mycobacterial DNA from fixed specimens. Diagn Mol Pathol 16: 169173.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Piersimoni C, Scarparo C, 2003. Relevance of commercial amplification methods for direct detection of Mycobacterium tuberculosis complex in clinical samples. J Clin Microbiol 41: 53555365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Lebrun L, Weill FX, Lafendi L, Houriez F, Casanova F, Gutierrez MC, Ingrand D, Lagrange P, Vincent V, Herrmann JL, 2005. Use of the INNO-LiPA-MYCOBACTERIA assay (version 2) for identification of Mycobacterium avium-Mycobacterium intracellulare-Mycobacterium scrofulaceum complex isolates. J Clin Microbiol 43: 25672574.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Richter E, Weizenegger M, Fahr AM, Rüsch-Gerdes S, 2004. Usefulness of the GenoType MTBC assay for differentiating species of the Mycobacterium tuberculosis complex in cultures obtained from clinical specimens. J Clin Microbiol 42: 43034306.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mazzarelli G, Rindi L, Piccoli P, Scarparo C, Garzelli C, Tortoli E, 2003. Evaluation of the BDProbeTec ET system for direct detection of Mycobacterium tuberculosis in pulmonary and extrapulmonary samples: a multicenter study. J Clin Microbiol 41: 17791782.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Chen X, Yang Q, Kong H, Chen Y, 2012. Real-time PCR and amplified MTD for rapid detection of Mycobacterium tuberculosis in pulmonary specimens. Int J Tuberc Lung Dis 16: 235239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Eigner U, Veldenzer A, Holfelder M, 2013. Evaluation of the FluoroType MTB assay for the rapid and reliable detection of Mycobacterium tuberculosis in respiratory tract specimens. Clin Lab 59: 11791181.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    McHugh TD, Newport LE, Gillespie SH, 1997. IS6110 homologs are present in multiple copies in mycobacteria other than tuberculosis-causing mycobacteria. J Clin Microbiol 35: 17691771.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Thierry D, Cave MD, Eisenach KD, Crawford JT, Bates JH, Gicquel B, Guesdon JL, 1990. IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18: 188.

  • 34.

    Kurepina NE, Sreevatsan S, Plikaytis BB, Bifani PJ, Connell ND, Donnelly RJ, van Sooligen D, Musser JM, Kreiswirth BN, 1998. Characterization of the phylogenetic distribution and chromosomal insertion sites of five IS6110 elements in Mycobacterium tuberculosis: non-random integration in the dnaA-dnaN region. Tuber Lung Dis 79: 3142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Helb D, Jones M, Story E, Boehme C, Wallace E, Ho K, Kop J, Owens MR, Rodgers R, Banada P, Safi H, Blakemore R, Lan NT, Jones-López EC, Levi M, Burday M, Ayakaka I, Mugerwa RD, McMillan B, Winn-Deen E, Christel L, Dailey P, Perkins MD, Persing DH, Alland D, 2010. Rapid detection of Mycobacterium tuberculosis and rifampin resistance by use of on-demand, near-patient technology. J Clin Microbiol 48: 229237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT, 2009. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55: 611622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Burkardt HJ, 2000. Standardization and quality control of PCR analyses. Clin Chem Lab Med 38: 8791.

  • 38.

    De Parseval N, Hiedmann T, 1998. Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the caucasian population. J Virol 72: 34423445.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Cohen M, Powers M, O'Connell C, Kato N, 1985. The nucleotide sequence of the env gene from the human provirus ERV3 and isolation and characterization of an ERV3-specific cDNA. Virology 147: 449458.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Yang YC, Lu PL, Huang SC, Jenh YS, Jou R, Chang TC, 2011. Evaluation of the Cobas TaqMan MTB test for direct detection of Mycobacterium tuberculosis complex in respiratory specimens. J Clin Microbiol 49: 797801.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1335 1004 66
Full Text Views 632 21 1
PDF Downloads 343 23 3
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save