Rationale for the Coadministration of Albendazole and Ivermectin to Humans for Malaria Parasite Transmission Control

Kevin C. Kobylinski Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Kevin C. Kobylinski in
Current site
Google Scholar
PubMed
Close
,
Haoues Alout Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Haoues Alout in
Current site
Google Scholar
PubMed
Close
,
Brian D. Foy Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Brian D. Foy in
Current site
Google Scholar
PubMed
Close
,
Archie Clements Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Archie Clements in
Current site
Google Scholar
PubMed
Close
,
Poom Adisakwattana Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Poom Adisakwattana in
Current site
Google Scholar
PubMed
Close
,
Brett E. Swierczewski Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Brett E. Swierczewski in
Current site
Google Scholar
PubMed
Close
, and
Jason H. Richardson Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; Research School of Population Health, The Australian National University, Canberra, Australian Capitol Territory, Australia; Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland; Deployed Warfighter Protection Program, Armed Forces Pest Management Board, Silver Spring, Maryland

Search for other papers by Jason H. Richardson in
Current site
Google Scholar
PubMed
Close
Restricted access

Recently there have been calls for the eradication of malaria and the elimination of soil-transmitted helminths (STHs). Malaria and STHs overlap in distribution, and STH infections are associated with increased risk for malaria. Indeed, there is evidence that suggests that STH infection may facilitate malaria transmission. Malaria and STH coinfection may exacerbate anemia, especially in pregnant women, leading to worsened child development and more adverse pregnancy outcomes than these diseases would cause on their own. Ivermectin mass drug administration (MDA) to humans for malaria parasite transmission suppression is being investigated as a potential malaria elimination tool. Adding albendazole to ivermectin MDAs would maximize effects against STHs. A proactive, integrated control platform that targets malaria and STHs would be extremely cost-effective and simultaneously reduce human suffering caused by multiple diseases. This paper outlines the benefits of adding albendazole to ivermectin MDAs for malaria parasite transmission suppression.

Author Notes

* Address correspondence to Kevin C. Kobylinski, Entomology Department, Armed Forces Research Institute of Medical Sciences, 315/6 Rajvithi Road, Bangkok, Thailand 10400. E-mail: kobylinskikevin@yahoo.com

Financial support: Funding for laboratory investigation was provided by the Military Infectious Disease Research Program. Part of this research was performed while K.C.K. held a National Research Council Research Associateship Award at the Walter Reed Army Institute of Research. H.A. and B.D.F. acknowledge funding from National Institutes of Health Grant 1R01AI094349-01A1 and thank Benjamin Krajacich, Jacob Meyers, Nathan Grubaugh, Massamba Sylla, Moussa Sarr, Lawrence Fakoli III, Fatorma Bolay, and Roch Dabiré for their work facilitating the field collections.

Authors' addresses: Kevin C. Kobylinski, Entomology Department, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand, E-mail: kobylinskikevin@yahoo.com. Haoues Alout and Brian D. Foy, Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, E-mails: Haoues@rams.colostate.edu and brian.foy@colostate.edu. Archie Clements, Research School of Population Health, College of Medicine Biology and Environment, The Australian National University, Canberra, ACT, Australia, E-mail: archie.clements@anu.edu. Poom Adisakwattana, Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, E-mail: poom.adi@mahidol.ac.th. Brett E. Swierczewski, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, E-mail: brett.e.swierczewski.mil@mail.mil. Jason H. Richardson, Armed Forces Pest Management Board, Silver Spring, MD, E-mail: Jason.h.richardson.mil@mail.mil.

  • 1.

    Roberts L, Enserink M, 2007. Malaria—did they really say … eradication? Science 318: 15441545.

  • 2.

    Utzinger J, 2012. A research and development agenda for the control and elimination of human helminthiases. PLoS Negl Trop Dis 6: e1646.

    • Search Google Scholar
    • Export Citation
  • 3.

    Knopp S, Stothard JR, Rollinson D, Mohammed KA, Khamis IS, Marti H, Utzinger J, 2013. From morbidity control to transmission control: time to change tactics against helminths on Unguja Island, Zanzibar. Acta Trop 128: 412422.

    • Search Google Scholar
    • Export Citation
  • 4.

    Molyneux DH, Nantulya VM, 2004. Linking disease control programmes in rural Africa: a pro-poor strategy to reach Abuja targets and millennium development goals. BMJ 328: 11291132.

    • Search Google Scholar
    • Export Citation
  • 5.

    Sachs JD, Hotez PJ, 2006. Fighting tropical diseases. Science 311: 1521.

  • 6.

    Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Sachs SE, Sachs JD, 2006. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria: a comprehensive pro-poor health policy and strategy for the developing world. PLoS Med 3: 576584.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hotez PJ, Molyneux DH, 2008. Tropical anemia: one of Africa's great killers and a rationale for linking malaria and neglected tropical disease control to achieve a common goal. PLoS Negl Trop Dis 2: e270.

    • Search Google Scholar
    • Export Citation
  • 8.

    Hotez PJ, Mistry N, Rubinstein J, Sachs JD, 2011. Integrating neglected tropical diseases into AIDS, tuberculosis, and malaria control. N Engl J Med 364: 20862089.

    • Search Google Scholar
    • Export Citation
  • 9.

    Smits HL, 2009. Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 7: 3756.

    • Search Google Scholar
    • Export Citation
  • 10.

    Kelly-Hope LA, Molyneux DH, Bockarie MJ, 2013. Can malaria vector control accelerate the interruption of lymphatic filariasis transmission in Africa; capturing a window of opportunity? Parasit Vectors 6: e39.

    • Search Google Scholar
    • Export Citation
  • 11.

    Richards FO, Emukah E, Graves PM, Nkwocha O, Nwankwo L, Rakers L, Mosher A, Patterson A, Ozaki M, Nwoke BEB, Ukaga CN, Njoku C, Nwodu K, Obasi A, Miri ES, 2013. Community-wide distribution of long-lasting insecticidal nets can halt transmission of lymphatic filariasis in southeastern Nigeria. Am J Trop Med Hyg 89: 578587.

    • Search Google Scholar
    • Export Citation
  • 12.

    Kisinza WN, Kisoka WJ, Mutalemwa PP, Njau J, Tenu F, Nyka T, Kilima SP, Magesa SM, 2008. Community directed interventions for malaria, tuberculosis and vitamin A in onchocerciasis endemic districts of Tanzania. Tanzan J Health Res 10: 232239.

    • Search Google Scholar
    • Export Citation
  • 13.

    Remme JHF, Grp CDIS, 2010. Community-directed interventions for priority health problems in Africa: results of a multicountry study. Bull World Health Organ 88: 509518.

    • Search Google Scholar
    • Export Citation
  • 14.

    Blackburn BG, Eigege A, Gotau H, Gerlong G, Miri E, Hawley WA, Mathieu E, Richards F, 2006. Successful integration of insecticide-treated bed net distribution with mass drug administration in Central Nigeria. Am J Trop Med Hyg 75: 650655.

    • Search Google Scholar
    • Export Citation
  • 15.

    Chaccour CJ, Kobylinski KC, Bassat Q, Bousema T, Drakeley C, Alonso P, Foy BD, 2013. Ivermectin to reduce malaria transmission: a research agenda for a promising new tool for elimination. Malar J 12: e153.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sylla M, Kobylinski KC, Gray M, Chapman PL, Sarr MD, Rasgon JL, Foy BD, 2010. Mass drug administration of ivermectin in south-eastern Senegal reduces the survivorship of wild-caught, blood fed malaria vectors. Malar J 9: e365.

    • Search Google Scholar
    • Export Citation
  • 17.

    Foy BD, Kobylinski KC, da Silva IM, Rasgon JL, Sylla M, 2011. Endectocides for malaria control. Trends Parasitol 27: 423428.

  • 18.

    Gutman J, Emukah E, Okpala N, Okoro C, Obasi A, Miri ES, Richards FO, 2010. Effects of annual mass treatment with ivermectin for onchocerciasis on the prevalence of intestinal helminths. Am J Trop Med Hyg 83: 534541.

    • Search Google Scholar
    • Export Citation
  • 19.

    Olsen A, 2007. Efficacy and safety of drug combinations in the treatment of schistosomiasis, soil-transmitted helminthiasis, lymphatic filariasis and onchocerciasis. Trans R Soc Trop Med Hyg 101: 747758.

    • Search Google Scholar
    • Export Citation
  • 20.

    Beach MJ, Streit TG, Addiss DG, Prospere R, Roberts JM, Lammie PJ, 1999. Assessment of combined ivermectin and albendazole for treatment of intestinal helminth and Wuchereria bancrofti infections in Haitian schoolchildren. Am J Trop Med Hyg 60: 479486.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ismail MM, Jayakody RL, 1999. Efficacy of albendazole and its combinations with ivermectin or diethylcarbamazine (DEC) in the treatment of Trichuris trichiura infections in Sri Lanka. Ann Trop Med Parasitol 93: 501504.

    • Search Google Scholar
    • Export Citation
  • 22.

    Belizario VY, Amarillo ME, de Leon WU, de los Reyes AE, Bugayong MG, Macatangay BJC, 2003. A comparison of the efficacy of single doses of albendazole, ivermectin, and diethylcarbamazine alone or in combinations against Ascaris and Trichuris spp. Bull World Health Organ 81: 3542.

    • Search Google Scholar
    • Export Citation
  • 23.

    Knopp S, Mohammed KA, Speich B, Hattendorf J, Khamis IS, Khamis AN, Stothard JR, Rollinson D, Marti H, Utzinger J, 2010. Albendazole and mebendazole administered alone or in combination with ivermectin against Trichuris trichiura: a randomized controlled trial. Clin Infect Dis 51: 14201428.

    • Search Google Scholar
    • Export Citation
  • 24.

    Ottesen EA, Ismail MM, Horton J, 1999. The role of albendazole in programmes to eliminate lymphatic filariasis. Parasitol Today 15: 382386.

    • Search Google Scholar
    • Export Citation
  • 25.

    Mohammed KA, Deb RM, Stanton MC, Molyneux DH, 2012. Soil transmitted helminths and scabies in Zanzibar, Tanzania following mass drug administration for lymphatic filariasis—a rapid assessment methodology to assess impact. Parasit Vectors 5: e299.

    • Search Google Scholar
    • Export Citation
  • 26.

    Gyapong JO, Kumaraswami V, Biswas G, Ottesen EA, 2005. Treatment strategies underpinning the global programme to eliminate lymphatic filariasis. Expert Opin Pharmacother 6: 179200.

    • Search Google Scholar
    • Export Citation
  • 27.

    Mwangi TW, Bethony JM, Brooker S, 2006. Malaria and helminth interactions in humans: an epidemiological viewpoint. Ann Trop Med Parasitol 100: 551570.

    • Search Google Scholar
    • Export Citation
  • 28.

    Brooker S, Clements ACA, Hotez PJ, Hay SI, Tatem AJ, Bundy DAP, Snow RW, 2006. The co-distribution of Plasmodium falciparum and hookworm among African schoolchildren. Malar J 5: e99.

    • Search Google Scholar
    • Export Citation
  • 29.

    Brooker SJ, Pullan RL, Gitonga CW, Ashton RA, Kolaczinski JH, Kabatereine NB, Snow RW, 2012. Plasmodium-helminth coinfection and its sources of heterogeneity across East Africa. J Infect Dis 205: 841852.

    • Search Google Scholar
    • Export Citation
  • 30.

    Suputtamongkol Y, Premasathian N, Bhumimuang K, Waywa D, Nilganuwong S, Karuphong E, Anekthananon T, Wanachiwanawin D, Silpasakorn S, 2011. Efficacy and safety of single and double doses of ivermectin versus 7-day high dose albendazole for chronic strongyloidiasis. PLoS Negl Trop Dis 5: e1044.

    • Search Google Scholar
    • Export Citation
  • 31.

    Kraivichian K, Nuchprayoon S, Sitichalernchai P, Chaicumpa W, Yentakam S, 2004. Treatment of cutaneous gnathostomiasis with ivermectin. Am J Trop Med Hyg 71: 623628.

    • Search Google Scholar
    • Export Citation
  • 32.

    Heukelbach J, Winter B, Wilcke T, Muehlen M, Albrecht S, de Oliveira FAS, Kerr-Pontes LRS, Liesenfeld O, Feldmeier H, 2004. Selective mass treatment with ivermectin to control intestinal helminthiases and parasitic skin diseases in a severely affected population. Bull World Health Organ 82: 563571.

    • Search Google Scholar
    • Export Citation
  • 33.

    Okeibunor JC, Amuyunzu-Nyamongo M, Onyeneho NG, Tchounkeu YFL, Manianga C, Kabali AT, Leak S, 2011. Where would I be without ivermectin? Capturing the benefits of community-directed treatment with ivermectin in Africa. Trop Med Int Health 16: 608621.

    • Search Google Scholar
    • Export Citation
  • 34.

    Naing C, Whittaker MA, Nyunt-Wai V, Reid SA, Wong SF, Mak JW, Tanner M, 2013. Malaria and soil-transmitted intestinal helminth co-infection and its effect on anemia: a meta-analysis. Trans R Soc Trop Med Hyg 107: 672683.

    • Search Google Scholar
    • Export Citation
  • 35.

    Ojurongbe O, Adegbayi AM, Bolaji OS, Akindele AA, Adefioye OA, Adeyeba OA, 2011. Asymptomatic falciparum malaria and intestinal helminths co-infection among school children in Osogbo, Nigeria. J Res Med Sci 16: 680686.

    • Search Google Scholar
    • Export Citation
  • 36.

    Yatich NJ, Yi J, Agbenyega T, Turpin A, Rayner JC, Stiles JK, Ellis WO, Funkhouser E, Ehiri JE, Williams JH, Jolly PE, 2009. Malaria and intestinal helminth co-infection among pregnant women in Ghana: prevalence and risk factors. Am J Trop Med Hyg 80: 896901.

    • Search Google Scholar
    • Export Citation
  • 37.

    Adegnika AA, Ramharter M, Agnandji ST, Ngoa UA, Issifou S, Yazdanbahksh M, Kremsner PG, 2010. Epidemiology of parasitic co-infections during pregnancy in Lambarene, Gabon. Trop Med Int Health 15: 12041209.

    • Search Google Scholar
    • Export Citation
  • 38.

    Degarege A, Legesse M, Medhin G, Animut A, Erko B, 2012. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study. BMC Infect Dis 12: 291.

    • Search Google Scholar
    • Export Citation
  • 39.

    Pullan RL, Kabatereine NB, Bukirwa H, Staedke SG, Brooker S, 2011. Heterogeneities and consequences of Plasmodium species and hookworm coinfection: a population based study in Uganda. J Infect Dis 203: 406417.

    • Search Google Scholar
    • Export Citation
  • 40.

    Hillier SD, Booth M, Muhangi L, Nkurunziza P, Khihembo M, Kakande M, Sewankambo M, Kizindo R, Kizza M, Muwanga M, Elliott AM, 2008. Plasmodium falciparum and helminth coinfection in a semiurban population of pregnant women in Uganda. J Infect Dis 198: 920927.

    • Search Google Scholar
    • Export Citation
  • 41.

    Fernandez-Nino JA, Idrovo AJ, Cucunuba ZM, Reyes-Harker P, Guerra AP, Moncada LI, Lopez MC, Barrera SM, Cortes LJ, Olivera M, Nicholls RS, 2012. Paradoxical associations between soil-transmitted helminths and Plasmodium falciparum infection. Trans R Soc Trop Med Hyg 106: 701708.

    • Search Google Scholar
    • Export Citation
  • 42.

    Righetti AA, Glinz D, Adiossan LG, Koua AYG, Niamke S, Hurrell RF, Wegmuller R, N'Goran EK, Utzinger J, 2012. Interactions and potential implications of Plasmodium falciparum-hookworm coinfection in different age groups in south-central Cote d'Ivoire. PLoS Negl Trop Dis 6: e1889.

    • Search Google Scholar
    • Export Citation
  • 43.

    Midzi N, Sangweme D, Zinyowera S, Mapingure MP, Brouwer KC, Munatsi A, Mutapi F, Mudzori J, Kumar N, Woelk G, Mduluza T, 2008. The burden of polyparasitism among primary schoolchildren in rural and farming areas in Zimbabwe. Trans R Soc Trop Med Hyg 102: 10391045.

    • Search Google Scholar
    • Export Citation
  • 44.

    Humphries D, Mosites E, Otchere J, Twum WA, Woo L, Jones-Sanpei H, Harrison LM, Bungiro RD, Benham-Pyle B, Bimi L, Edoh D, Bosompem K, Wilson M, Cappello M, 2011. Epidemiology of hookworm infection in Kintampo North Municipality, Ghana: patterns of malaria coinfection, anemia, and albendazole treatment failure. Am J Trop Med Hyg 84: 792800.

    • Search Google Scholar
    • Export Citation
  • 45.

    Boel M, Carrara VI, Rijken M, Proux S, Nacher M, Pimanpanarak M, Paw MK, Moo O, Gay H, Bailey W, Singhasivanon P, White NJ, Nosten F, McGready R, 2010. Complex interactions between soil-transmitted helminths and malaria in pregnant women on the Thai-Burmese border. PLoS Negl Trop Dis 4: e887.

    • Search Google Scholar
    • Export Citation
  • 46.

    Spiegel A, Tall A, Raphenon G, Trape JF, Druilhe P, 2003. Increased frequency of malaria attacks in subjects co-infected by intestinal worms and Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg 97: 198199.

    • Search Google Scholar
    • Export Citation
  • 47.

    Nacher M, Singhasivanon P, Yimsamran S, Manibunyong W, Thanyavanich N, Wuthisen P, Looareesuwan S, 2002. Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol 88: 5558.

    • Search Google Scholar
    • Export Citation
  • 48.

    Degarege A, Animut A, Legesse M, Erko B, 2009. Malaria severity status in patients with soil-transmitted helminth infections. Acta Trop 112: 811.

    • Search Google Scholar
    • Export Citation
  • 49.

    Nacher M, Singhasivanon P, Gay F, Silachomroon U, Phumratanaprapin W, Looareesuwan S, 2001. Contemporaneous and successive mixed Plasmodium falciparum and Plasmodium vivax infections are associated with Ascaris lumbricoides: an immunomodulating effect? J Parasitol 87: 912915.

    • Search Google Scholar
    • Export Citation
  • 50.

    Bousema JT, Drakeley CJ, Mens PF, Arens T, Houben R, Omar SA, Gouagna LC, Schallig H, Sauerwein RW, 2008. Increased Plasmodium falciparum gametocyte production in mixed infections with P. malariae. Am J Trop Med Hyg 78: 442448.

    • Search Google Scholar
    • Export Citation
  • 51.

    Gneme A, Guelbeogo WM, Riehle MM, Tiono AB, Diarra A, Kabre GB, Sagnon N, Vernick KD, 2013. Plasmodium species occurrence, temporal distribution and interaction in a child-aged population in rural Burkina Faso. Malar J 12: e67.

    • Search Google Scholar
    • Export Citation
  • 52.

    McKenzie FE, Jeffery GM, Collins WE, 2002. Plasmodium malariae infection boosts Plasmodium falciparum gametocyte production. Am J Trop Med Hyg 67: 411414.

    • Search Google Scholar
    • Export Citation
  • 53.

    Chaorattanakawee S, Natalang O, Hananantachai H, Nacher M, Brockman A, Nosten F, Looareesuwan S, Patarapotikul J, 2003. Trichuris trichiura infection is associated with the multiplicity of Plasmodium falciparum infections, in Thailand. Ann Trop Med Parasitol 97: 199202.

    • Search Google Scholar
    • Export Citation
  • 54.

    Nacher M, Singhasivanon P, Silachamroon U, Treeprasertsuk S, Krudsood S, Gay F, Mazier D, Looareesuwan S, 2001. Association of helminth infections with increased gametocyte carriage during mild falciparum malaria in Thailand. Am J Trop Med Hyg 65: 644647.

    • Search Google Scholar
    • Export Citation
  • 55.

    Nacher M, 2012. Helminth-infected patients with malaria: a low profile transmission hub? Malar J 11: e376.

  • 56.

    Kirwan P, Asaolu SO, Molloy SF, Abiona TC, Jackson AL, Holland CV, 2009. Patterns of soil-transmitted helminth infection and impact of four-monthly albendazole treatments in preschool children from semi-urban communities in Nigeria: a double-blind placebo-controlled randomised trial. BMC Infect Dis 9: e20.

    • Search Google Scholar
    • Export Citation
  • 57.

    Kirwan P, Jackson AL, Asaolu SO, Molloy SF, Abiona TC, Bruce MC, Ranford-Cartwright L, O'Neill SM, Holland CV, 2010. Impact of repeated four-monthly anthelmintic treatment on Plasmodium infection in preschool children: a double-blind placebo-controlled randomized trial. BMC Infect Dis 10: e277.

    • Search Google Scholar
    • Export Citation
  • 58.

    Brutus L, Watier L, Briand V, Hanitrasoamampionona V, Razanatsoarilala H, Cot M, 2006. Parasitic co-infections: Does Ascaris lumbricoides protect against Plasmodium falciparum infection? Am J Trop Med Hyg 75: 194198.

    • Search Google Scholar
    • Export Citation
  • 59.

    Brutus L, Watier L, Hanitrasoarnampionona V, Razanatsoarilala H, Cot M, 2007. Confirmation of the protective effect of Ascaris lumbricoides on Plasmodium falciparum infection: results of a randomized trial in Madagascar. Am J Trop Med Hyg 77: 10911095.

    • Search Google Scholar
    • Export Citation
  • 60.

    Le Hesran JY, Akiana J, El Ndiaye HM, Dia M, Senghor P, Konate L, 2004. Severe malaria attack is associated with high prevalence of Ascaris lumbricoides infection among children in rural Senegal. Trans R Soc Trop Med Hyg 98: 397399.

    • Search Google Scholar
    • Export Citation
  • 61.

    Nacher M, 2008. Worms and malaria: blind men feeling the elephant? Parasitology 135: 861868.

  • 62.

    Nacher M, 2011. Interactions between worms and malaria: good worms or bad worms? Malar J 10: e259.

  • 63.

    Nacher M, Singhasivanon P, Gay F, Phumratanaprapin W, Silachamroon U, Looareesuwan S, 2001. Association of helminth infection with decreased reticulocyte counts and hemoglobin concentration in Thai falciparum malaria. Am J Trop Med Hyg 65: 335337.

    • Search Google Scholar
    • Export Citation
  • 64.

    Midzi N, Mtapuri-Zinyowera S, Mapingure MP, Sangweme D, Chirehwa MT, Brouwer KC, Mudzori J, Hlerema G, Mutapi F, Kumar N, Mduluza T, 2010. Consequences of polyparasitism on anaemia among primary school children in Zimbabwe. Acta Trop 115: 103111.

    • Search Google Scholar
    • Export Citation
  • 65.

    Yatich NJ, Jolly PE, Funkhouser E, Agbenyega T, Rayner JC, Ehiri JE, Turpin A, Stiles JK, Ellis WO, Jiang Y, Williams JH, 2010. The effect of malaria and intestinal helminth coinfection on birth outcomes in Kumasi, Ghana. Am J Trop Med Hyg 82: 2834.

    • Search Google Scholar
    • Export Citation
  • 66.

    Taylor-Robinson DC, Jones AP, Garner P, 2007. Deworming drugs for treating soil-transmitted intestinal worms in children: effects on growth and school performance. Cochrane Database Syst Rev 4: CD000371.

    • Search Google Scholar
    • Export Citation
  • 67.

    Sachs J, Malaney P, 2002. The economic and social burden of malaria. Nature 415: 680685.

  • 68.

    Molyneux DH, Hotez PJ, Fenwick A, 2005. “Rapid-impact interventions”: how a policy of integrated control for Africa's neglected tropical diseases could benefit the poor. PLoS Med 2: 10641070.

    • Search Google Scholar
    • Export Citation
  • 69.

    Christian P, Khatry SK, West KP, 2004. Antenatal anthelmintic treatment, birthweight, and infant survival in rural Nepal. Lancet 364: 981983.

    • Search Google Scholar
    • Export Citation
  • 70.

    Ndyomugyenyi R, Kabatereine N, Olsen A, Magnussen P, 2008. Efficacy of ivermectin and albendazole alone and in combination for treatment of soil-transmitted helminths in pregnancy and adverse events: a randomized open label controlled intervention trial in Masindi District, western Uganda. Am J Trop Med Hyg 79: 856863.

    • Search Google Scholar
    • Export Citation
  • 71.

    Gyapong JO, Chinbuah MA, Gyapong M, 2003. Inadvertent exposure of pregnant women to ivermectin and albendazole during mass drug administration for lymphatic filariasis. Trop Med Int Health 8: 10931101.