• 1.

    Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH, 2008. How many species are infected with Wolbachia? - a statistical analysis of current data. FEMS Microbiol Lett 281: 215220.

    • Search Google Scholar
    • Export Citation
  • 2.

    Zug R, Hammerstein P, 2012. Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7: e38544.

    • Search Google Scholar
    • Export Citation
  • 3.

    Hoffmann AA, Turelli M, Harshman LG, 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans. Genetics 126: 933948.

    • Search Google Scholar
    • Export Citation
  • 4.

    Werren JH, Baldo L, Clark ME, 2008. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6: 741751.

  • 5.

    Yen JH, Barr AR, 1973. The etiological agent of cytoplasmic incompatibility in Culex pipens. J Invertebr Pathol 22: 242250.

  • 6.

    Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR, 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans. PLoS Pathog 9: e1003607.

    • Search Google Scholar
    • Export Citation
  • 7.

    Riegler M, Sidhu M, Miller WJ, O'Neill SL, 2005. Evidence for a global Wolbachia replacement in Drosophila melanogaster. Curr Biol 15: 14281433.

    • Search Google Scholar
    • Export Citation
  • 8.

    Turelli M, Hoffmann AA, 1991. Rapid spread of inherited incompatibility factor in California Drosophila. Nature 353: 440442.

  • 9.

    Kittayapong P, Baisley KJ, Baimai V, O'Neill SL, 2000. Distribution and diversity of Wolbachia infections in southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37: 340345.

    • Search Google Scholar
    • Export Citation
  • 10.

    McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL, 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti. Science 323: 141144.

    • Search Google Scholar
    • Export Citation
  • 11.

    Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.

    • Search Google Scholar
    • Export Citation
  • 12.

    Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium. Cell 139: 12681278.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hancock PA, Sinkins SP, Godfray HC, 2011. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis 5: e1024.

    • Search Google Scholar
    • Export Citation
  • 14.

    Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.

    • Search Google Scholar
    • Export Citation
  • 15.

    Suh E, Mercer DR, Fu YQ, Dobson SL, 2009. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl Environ Microbiol 75: 77837788.

    • Search Google Scholar
    • Export Citation
  • 16.

    McMeniman CJ, O'Neill SL, 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 4: e748.

    • Search Google Scholar
    • Export Citation
  • 17.

    Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, 2011. Dynamics of the “Popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.

    • Search Google Scholar
    • Export Citation
  • 18.

    Turley AP, Moreira LA, O'Neill SL, McGraw EA, 2009. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti. PLoS Negl Trop Dis 3: e516.

    • Search Google Scholar
    • Export Citation
  • 19.

    Gavotte L, Mercer DR, Stoeckle JJ, Dobson SL, 2010. Costs and benefits of Wolbachia infection in immature Aedes albopictus depend upon sex and competition level. J Invertebr Pathol 105: 341346.

    • Search Google Scholar
    • Export Citation
  • 20.

    Tun-Lin W, Burkot TR, Kay BH, 2000. Effects of temperature and larval diet on development rates and survival of the dengue vector Aedes aegypti in north Queensland, Australia. Med Vet Entomol 14: 3137.

    • Search Google Scholar
    • Export Citation
  • 21.

    Wada Y, 1965. Effect of larval density on the development of Aedes aegypti (L.) and the size of adults. Quaest Ent 1: 223249.

  • 22.

    Barbosa P, Peters TM, Greenough NC, 1972. Overcrowding of mosquito populations: responses of larval Aedes aegypti to stress. Environ Entomol 1: 8993.

    • Search Google Scholar
    • Export Citation
  • 23.

    Maciá A, 2009. Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae). Rev Soc Entomol Argent 68: 107114.

    • Search Google Scholar
    • Export Citation
  • 24.

    Dye C, 1984. Competition amongst larval Aedes aegypti: the role of interference. Ecol Entomol 9: 355357.

  • 25.

    Bedhomme S, Agnew P, Sidobre C, Michalakis Y, 2005. Pollution by conspecifics as a component of intraspecific competition among Aedes aegypti larvae. Ecol Entomol 30: 17.

    • Search Google Scholar
    • Export Citation
  • 26.

    Marina CF, Fernandez-Salas I, Ibarra JE, Arredondo-Jimenez JI, Valle J, Williams T, 2005. Transmission dynamics of an iridescent virus in an experimental mosquito population: the role of host density. Ecol Entomol 30: 376382.

    • Search Google Scholar
    • Export Citation
  • 27.

    Braks MA, Honorio NA, Lounibos LP, Lourenco-De-Oliveira R, Juliano SA, 2004. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann Entomol Soc Am 97: 130139.

    • Search Google Scholar
    • Export Citation
  • 28.

    Juliano SA, 1998. Species introduction and replacement among mosquitoes: Interspecific resource competition or apparent competition? Ecology 79: 255268.

    • Search Google Scholar
    • Export Citation
  • 29.

    Caspari E, Watson GS, 1959. On the evolutionary importance of cytoplasmic sterility in mosquitos. Evolution 13: 568570.

  • 30.

    Turelli M, Hoffmann AA, 1999. Microbe-induced cytoplasmic incompatibility as a mechanism for introducing transgenes into arthropod populations. Insect Mol Biol 8: 243255.

    • Search Google Scholar
    • Export Citation
  • 31.

    Crain PR, Mains JW, Suh E, Huang YX, Crowley PH, Dobson SL, 2011. Wolbachia infections that reduce immature insect survival: predicted impacts on population replacement. BMC Evol Biol 11: 290.

    • Search Google Scholar
    • Export Citation
  • 32.

    Islam MS, Dobson SL, 2006. Wolbachia effects on Aedes albopictus (Diptera: Culicidae) immature survivorship and development. J Med Entomol 43: 689695.

    • Search Google Scholar
    • Export Citation
  • 33.

    Gavotte L, Mercer DR, Vandyke R, Mains JW, Dobson SL, 2009. Wolbachia infection and resource competition effects on immature Aedes albopictus (Diptera: Culicidae). J Med Entomol 46: 451459.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nasci RS, 1990. Relationship of wing length to adult dry weight in several mosquito species (Diptera: Culicidae). J Med Entomol 27: 716719.

    • Search Google Scholar
    • Export Citation
  • 35.

    Russell RC, 1986. Larval competition between the introduced vector of dengue fever in Australia, Aedes aegypti (L), and a native container breeding mosquito, Aedes notoscriptus (Skuse) (Diptera, Culicidae). Aust J Zool 34: 527534.

    • Search Google Scholar
    • Export Citation
  • 36.

    Anderson LE, 1954. Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist 57: 242244.

  • 37.

    Huestis DL, Yaro AS, Traore AI, Adamou A, Kassogue Y, Diallo M, Timbine S, Dao A, Lehmann T, 2011. Variation in metabolic rate of Anopheles gambiae and A. arabiensis in a Sahelian village. J Exp Biol 214: 23452353.

    • Search Google Scholar
    • Export Citation
  • 38.

    Endersby NM, McKechnie SW, Vogel H, Gahan LJ, Baxter SW, Ridland PM, Weeks AR, 2005. Microsatellites isolated from diamondback moth, Plutella xylostella (L.), for studies of dispersal in Australian populations. Mol Ecol Notes 5: 5153.

    • Search Google Scholar
    • Export Citation
  • 39.

    Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans. Appl Environ Microbiol 78: 47404743.

    • Search Google Scholar
    • Export Citation
  • 40.

    Yeap HL, Endersby NM, Johnson PH, Ritchie SA, Hoffmann AA, 2013. Body size and wing shape measurements as quality indicators of Aedes aegypti mosquitoes destined for field release. Am J Trop Med Hyg 89: 7892.

    • Search Google Scholar
    • Export Citation
  • 41.

    Bedhomme S, Agnew P, Sidobre C, Michalakis Y, 2003. Sex-specific reaction norms to intraspecific larval competition in the mosquito Aedes aegypti. J Evol Biol 16: 721730.

    • Search Google Scholar
    • Export Citation
  • 42.

    Hurst TP, Pittman G, O'Neill SL, Ryan PA, Nguyen HL, Kay BH, 2012. Impacts of Wolbachia infection on predator prey relationships: evaluating survival and horizontal transfer between wMelPop infected Aedes aegypti and its predators. J Med Entomol 49: 624630.

    • Search Google Scholar
    • Export Citation
  • 43.

    Suh E, Dobson SL, 2013. Reduced competitiveness of Wolbachia infected Aedes aegypti larvae in intra and inter specific immature interactions. J Invertebr Pathol 114: 173177.

    • Search Google Scholar
    • Export Citation
  • 44.

    Moreira LA, Saig E, Turley AP, Ribeiro JM, O'Neill SL, McGraw EA, 2009. Human probing behavior of Aedes aegypti when infected with a life-shortening strain of Wolbachia. PLoS Negl Trop Dis 3: e568.

    • Search Google Scholar
    • Export Citation
  • 45.

    Evans O, Caragata EP, McMeniman CJ, Woolfit M, Green DC, Williams CR, Franklin CE, O'Neill SL, McGraw EA, 2009. Increased locomotor activity and metabolism of Aedes aegypti infected with a life-shortening strain of Wolbachia pipientis. J Exp Biol 212: 14361441.

    • Search Google Scholar
    • Export Citation
  • 46.

    Briegel H, 1990. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol 36: 165172.

    • Search Google Scholar
    • Export Citation
  • 47.

    Nasci RS, 1986. The size of emerging and host seeking Aedes aegypti and the relation of size to blood feeding success in the field. J Am Mosquito Contr 2: 6162.

    • Search Google Scholar
    • Export Citation
  • 48.

    Ponlawat A, Harrington LC, 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti. Am J Trop Med Hyg 80: 395400.

    • Search Google Scholar
    • Export Citation
  • 49.

    McGraw EA, O'Neill SL, 2013. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11: 181193.

  • 50.

    Hoffmann AA, Turelli M, 2013. Facilitating Wolbachia introductions into mosquito populations through insecticide-resistance selection. Proc Biol Sci 280: 20130371.

    • Search Google Scholar
    • Export Citation
  • 51.

    Brownstein JS, Hett E, O'Neill SL, 2003. The potential of virulent Wolbachia to modulate disease transmission by insects. J Invertebr Pathol 84: 2429.

    • Search Google Scholar
    • Export Citation
  • 52.

    Salazar MI, Richardson JH, Sanchez-Vargas I, Olson KE, Beaty BJ, 2007. Dengue virus type 2: replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol 7: 9.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 275 146 11
PDF Downloads 138 73 8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Larval Competition Extends Developmental Time and Decreases Adult Size of wMelPop Wolbachia-Infected Aedes aegypti

View More View Less
  • Bio21 Institute and Department of Genetics, University of Melbourne, Melbourne, Victoria, Australia
Restricted access

The intracellular endosymbiont Wolbachia has been artificially transinfected into the dengue vector Aedes aegypti, where it is being investigated as a potential dengue biological control agent. Invasion of Wolbachia in natural populations depends upon the fitness of Wolbachia-infected Ae. aegypti relative to uninfected competitors. Although Wolbachia infections impose fitness costs on the adult host, effects at the immature stages are less clear, particularly in competitive situations. We look for effects of two Wolbachia infections, wMel and wMelPop, on intra-strain and inter-strain larval competition in Ae. aegypti. Development of Wolbachia-infected larvae is delayed in mixed cohorts with uninfected larvae under crowded-rearing conditions. Slow developing wMelPop-infected larvae have reduced adult size compared with uninfected larvae, and larvae with the wMel infection are somewhat larger and have greater viability relative to uninfected larvae when in mixed cohorts. Implications for successful invasion by these Wolbachia infections under field conditions are considered.

Author Notes

* Address correspondence to Perran A. Ross, Pest and Disease Vector Group, Bio21 Institute and the Department of Genetics, University of Melbourne, Parkville, VIC 3052, Australia. E-mail: paross@student.unimelb.edu.au

Financial support: This study was supported by the National Health and Medical Research Council. Ary A. Hoffmann was supported by Laureate Fellowship from the Australian Research Council.

Authors' addresses: Perran A. Ross, Nancy M. Endersby, Heng Lin Yeap, and Ary A. Hoffmann, Pest and Disease Vector Group, Bio21 Institute and the Department of Genetics, University of Melbourne, Parkville, Australia, E-mails: paross@student.unimelb.edu.au, nancye@unimelb.edu.au, hlyeap@unimelb.edu.au, and ary@unimelb.edu.au.

Save