• 1.

    World Health Organization, 2012. World Malaria Report, 2012. Geneva: World Health Organization.

  • 2.

    World Health Organization, 2005. Global Strategic Plan 2005–2015. Geneva: Roll Back Malaria (RBM) Partnership.

  • 3.

    Samudio F, Santamaria AM, Obaldia N 3rd, Pascale JM, Bayard V, Calzada JE, 2005. Prevalence of Plasmodium falciparum mutations associated with antimalarial drug resistance during an epidemic in Kuna Yala, Panama, Central America. Am J Trop Med Hyg 73: 839841.

    • Search Google Scholar
    • Export Citation
  • 4.

    Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861871.

    • Search Google Scholar
    • Export Citation
  • 5.

    Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344: 257263.

    • Search Google Scholar
    • Export Citation
  • 6.

    Schneider AG, Premji Z, Felger I, Smith T, Abdulla S, Beck HP, Mshinda H, 2002. A point mutation in codon 76 of pfcrt of P. falciparum is positively selected for by chloroquine treatment in Tanzania. Infect Genet Evol 1: 183189.

    • Search Google Scholar
    • Export Citation
  • 7.

    Cortese JF, Caraballo A, Contreras CE, Plowe CV, 2002. Origin and dissemination of Plasmodium falciparum drug-resistance mutations in South America. J Infect Dis 186: 9991006.

    • Search Google Scholar
    • Export Citation
  • 8.

    Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ, 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320323.

    • Search Google Scholar
    • Export Citation
  • 9.

    Cowman AF, Morry MJ, Biggs BA, Cross GA, Foote SJ, 1988. Amino acid changes linked to pyrimethamine resistance in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 85: 91099113.

    • Search Google Scholar
    • Export Citation
  • 10.

    Peterson DS, Walliker D, Wellems TE, 1988. Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci USA 85: 91149118.

    • Search Google Scholar
    • Export Citation
  • 11.

    Reeder JC, Rieckmann KH, Genton B, Lorry K, Wines B, Cowman AF, 1996. Point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes and in vitro susceptibility to pyrimethamine and cycloguanil of Plasmodium falciparum isolates from Papua New Guinea. Am J Trop Med Hyg 55: 209213.

    • Search Google Scholar
    • Export Citation
  • 12.

    Basco LK, Eldin de Pecoulas P, Wilson CM, Le Bras J, Mazabraud A, 1995. Point mutations in the dihydrofolate reductase-thymidylate synthase gene and pyrimethamine and cycloguanil resistance in Plasmodium falciparum. Mol Biochem Parasitol 69: 135138.

    • Search Google Scholar
    • Export Citation
  • 13.

    Contreras CE, Cortese JF, Caraballo A, Plowe CV, 2002. Genetics of drug-resistant Plasmodium falciparum malaria in the Venezuelan state of Bolivar. Am J Trop Med Hyg 67: 400405.

    • Search Google Scholar
    • Export Citation
  • 14.

    Cortese JF, Plowe CV, 1998. Antifolate resistance due to new and known Plasmodium falciparum dihydrofolate reductase mutations expressed in yeast. Mol Biochem Parasitol 94: 205214.

    • Search Google Scholar
    • Export Citation
  • 15.

    Khalil I, Ronn AM, Alifrangis M, Gabar HA, Satti GM, Bygbjerg IC, 2003. Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole. Am J Trop Med Hyg 68: 586589.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sirawaraporn W, Sathitkul T, Sirawaraporn R, Yuthavong Y, Santi DV, 1997. Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci USA 94: 11241129.

    • Search Google Scholar
    • Export Citation
  • 17.

    Urdaneta L, Plowe C, Goldman I, Lal AA, 1999. Point mutations in dihydrofolate reductase and dihydropteroate synthase genes of Plasmodium falciparum isolates from Venezuela. Am J Trop Med Hyg 61: 457462.

    • Search Google Scholar
    • Export Citation
  • 18.

    Vasconcelos KF, Plowe CV, Fontes CJ, Kyle D, Wirth DF, Pereira da Silva LH, Zalis MG, 2000. Mutations in Plasmodium falciparum dihydrofolate reductase and dihydropteroate synthase of isolates from the Amazon region of Brazil. Mem Inst Oswaldo Cruz 95: 721728.

    • Search Google Scholar
    • Export Citation
  • 19.

    Berglez J, Iliades P, Sirawaraporn W, Coloe P, Macreadie I, 2004. Analysis in Escherichia coli of Plasmodium falciparum dihydropteroate synthase (DHPS) alleles implicated in resistance to sulfadoxine. Int J Parasitol 34: 95100.

    • Search Google Scholar
    • Export Citation
  • 20.

    Triglia T, Menting JG, Wilson C, Cowman AF, 1997. Mutations in dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc Natl Acad Sci USA 94: 1394413949.

    • Search Google Scholar
    • Export Citation
  • 21.

    Triglia T, Wang P, Sims PF, Hyde JE, Cowman AF, 1998. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine-resistant malaria. EMBO J 17: 38073815.

    • Search Google Scholar
    • Export Citation
  • 22.

    PAHO/WHO, 2009. Report on Situation of Malaria in Americas, 2008. Washington, DC: Pan American Health Organization, and Geneva: World Health Organzation.

    • Search Google Scholar
    • Export Citation
  • 23.

    PAHO/WHO, 2003. Generic Protocols and Flow Diagram for In Vivo Antimalarial Drug-Efficacy Studies in the Americas. Available at: http://www.paho.org/english/AD/DPC/CD/mal-antimalarials.htm. Accessed June 3, 2010.

    • Search Google Scholar
    • Export Citation
  • 24.

    Griffing S, Syphard L, Sridaran S, McCollum AM, Mixson-Hayden T, Vinayak S, Villegas L, Barnwell JW, Escalante AA, Udhayakumar V, 2010. pfmdr1 amplification and fixation of pfcrt chloroquine resistance alleles in Plasmodium falciparum in Venezuela. Antimicrob Agents Chemother 54: 15721579.

    • Search Google Scholar
    • Export Citation
  • 25.

    Vinayak S, Alam MT, Mixson-Hayden T, McCollum AM, Sem R, Shah NK, Lim P, Muth S, Rogers WO, Fandeur T, Barnwell JW, Escalante AA, Wongsrichanalai C, Ariey F, Meshnick SR, Udhayakumar V, 2010. Origin and evolution of sulfadoxine resistant Plasmodium falciparum. PLoS Pathog 6: e1000830.

    • Search Google Scholar
    • Export Citation
  • 26.

    World Health Organization, 2010. Global Report on Antimalarial Efficacy and Drug Resistance: 2000–2010. Geneva: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 27.

    Wongsrichanalai C, Pickard AL, Wernsdorfer WH, Meshnick SR, 2002. Epidemiology of drug-resistant malaria. Lancet Infect Dis 2: 209218.

  • 28.

    Vieira PP, Ferreira MU, Alecrim MG, Alecrim WD, da Silva LH, Sihuincha MM, Joy DA, Mu J, Su XZ, Zalis MG, 2004. pfcrt polymorphism and the spread of chloroquine resistance in Plasmodium falciparum populations across the Amazon Basin. J Infect Dis 190: 417424.

    • Search Google Scholar
    • Export Citation
  • 29.

    Londono BL, Eisele TP, Keating J, Bennett A, Chattopadhyay C, Heyliger G, Mack B, Rawson I, Vely JF, Desinor O, Krogstad DJ, 2009. Chloroquine-resistant haplotype Plasmodium falciparum parasites, Haiti. Emerg Infect Dis 15: 735740.

    • Search Google Scholar
    • Export Citation
  • 30.

    Mejia Torres RE, Banegas EI, Mendoza M, Diaz C, Bucheli ST, Fontecha GA, Alam MT, Goldman I, Udhayakumar V, Zambrano JO, 2013. Efficacy of chloroquine for the treatment of uncomplicated Plasmodium falciparum malaria in Honduras. Am J Trop Med Hyg 88: 850854.

    • Search Google Scholar
    • Export Citation
  • 31.

    Jovel IT, Mejia RE, Banegas E, Piedade R, Alger J, Fontecha G, Ferreira PE, Veiga MI, Enamorado IG, Bjorkman A, Ursing J, 2011. Drug resistance associated genetic polymorphisms in Plasmodium falciparum and Plasmodium vivax collected in Honduras, Central America. Malar J 10: 376.

    • Search Google Scholar
    • Export Citation
  • 32.

    Maude RJ, Pontavornpinyo W, Saralamba S, Aguas R, Yeung S, Dondorp AM, Day NP, White NJ, White LJ, 2009. The last man standing is the most resistant: eliminating artemisinin-resistant malaria in Cambodia. Malar J 8: 31.

    • Search Google Scholar
    • Export Citation
  • 33.

    Djimde AA, Barger B, Kone A, Beavogui AH, Tekete M, Fofana B, Dara A, Maiga H, Dembele D, Toure S, Dama S, Ouologuem D, Sangare CP, Dolo A, Sogoba N, Nimaga K, Kone Y, Doumbo OK, 2010. A molecular map of chloroquine resistance in Mali. FEMS Immunol Med Microbiol 58: 113118.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 258 84 1
PDF Downloads 73 24 1
 
 
 
 
 
 
 
 
 
 
 

Molecular Analysis of Chloroquine and Sulfadoxine-Pyrimethamine Resistance-Associated Alleles in Plasmodium falciparum Isolates from Nicaragua

Sankar SridaranMalaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Decatur, Georgia; National Reference and Diagnosis Center, Ministry of Health, Managua, Nicaragua; Pan American Health Organization, Managua, Nicaragua

Search for other papers by Sankar Sridaran in
Current site
Google Scholar
PubMed
Close
,
Betzabe RodriguezMalaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Decatur, Georgia; National Reference and Diagnosis Center, Ministry of Health, Managua, Nicaragua; Pan American Health Organization, Managua, Nicaragua

Search for other papers by Betzabe Rodriguez in
Current site
Google Scholar
PubMed
Close
,
Aida Mercedes SotoMalaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Decatur, Georgia; National Reference and Diagnosis Center, Ministry of Health, Managua, Nicaragua; Pan American Health Organization, Managua, Nicaragua

Search for other papers by Aida Mercedes Soto in
Current site
Google Scholar
PubMed
Close
,
Alexandre Macedo De OliveiraMalaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Decatur, Georgia; National Reference and Diagnosis Center, Ministry of Health, Managua, Nicaragua; Pan American Health Organization, Managua, Nicaragua

Search for other papers by Alexandre Macedo De Oliveira in
Current site
Google Scholar
PubMed
Close
, and
Venkatachalam UdhayakumarMalaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia; Atlanta Research and Education Foundation, Decatur, Georgia; National Reference and Diagnosis Center, Ministry of Health, Managua, Nicaragua; Pan American Health Organization, Managua, Nicaragua

Search for other papers by Venkatachalam Udhayakumar in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Chloroquine (CQ) is used as a first-line therapy for the treatment of Plasmodium falciparum malaria in Nicaragua. We investigated the prevalence of molecular markers associated with CQ and sulfadoxine-pyrimethamine (SP) resistance in P. falciparum isolates obtained from the North Atlantic Autonomous Region of Nicaragua. Blood spots for this study were made available from a CQ and SP drug efficacy trial conducted in 2005 and also from a surveillance study performed in 2011. Polymorphisms in P. falciparum CQ resistance transporter, dihydrofolate reductase, and dihydropteroate synthase gene loci that are associated with resistance to CQ, pyrimethamine, and sulfadoxine, respectively, were detected by DNA sequencing. In the 2005 dataset, only 2 of 53 isolates had a CQ resistance allele (CVIET), 2 of 52 had a pyrimethamine resistance allele, and 1 of 49 had a sulfadoxine resistance allele. In the 2011 dataset, none of 45 isolates analyzed had CQ or SP resistance alleles.

Author Notes

* Address correspondence to Venkatachalam Udhayakumar, Malaria Branch, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Atlanta, GA 30333. E-mail: vxu0@cdc.gov

Financial support: This study was supported by the United States Agency for International Development under the Amazon Malaria Initiative, the Pan American Health Organization, the Network for Surveillance of Antimalarial Drug Resistance, the Ministry of Health of Nicaragua, and the Atlanta Research and Education Foundation (Decatur, GA). Sankar Sridaran was also partly supported by the Centers for Disease Control and Prevention Emerging Infectious Diseases Fellowship.

Authors' addresses: Sankar Sridaran, Case Western University School of Medicine, Cleveland, OH, E-mail: sxs973@case.edu. Betzabe Rodriguez, National Reference and Diagnosis Center, Ministry of Health, Managua, Nicaragua, E-mail: parasitología@minsa.gob.ni. Aida Mercedes Soto, Pan American Health Organization, Managua, Nicaragua, E-mail: sotoa@nic.ops-oms.org. Alexandre Macedo De Oliveira and Venkatachalam Udhayakumar, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, E-mails: acq7@cdc.gov and vxu0@cdc.gov.

Save