• 1.

    Maguina C, Gotuzzo E, 2000. Bartonellosis. New and old. Infect Dis Clin North Am 14: 122 vii.

  • 2.

    Lydy SL, Eremeeva ME, Asnis D, Paddock CD, Nicholson WL, Silverman DJ, Dasch GA, 2008. Isolation and characterization of Bartonella bacilliformis from an expatriate Ecuadorian. J Clin Microbiol 46: 627637.

    • Search Google Scholar
    • Export Citation
  • 3.

    Huarcaya E, Maguina C, Torres R, Rupay J, Fuentes L, 2004. Bartonelosis (Carrion's Disease) in the pediatric population of Peru: an overview and update. Braz J Infect Dis 8: 331339.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kosek M, Lavarello R, Gilman RH, Delgado J, Maguina C, Verastegui M, Lescano AG, Mallqui V, Kosek JC, Recavarren S, Cabrera L, 2000. Natural history of infection with Bartonella bacilliformis in a nonendemic population. J Infect Dis 182: 865872.

    • Search Google Scholar
    • Export Citation
  • 5.

    Gray GC, Johnson AA, Thornton SA, Smith WA, Knobloch J, Kelley PW, Obregon Escudero L, Arones Huayda M, Wignall FS, 1990. An epidemic of Oroya fever in the Peruvian Andes. Am J Trop Med Hyg 42: 215221.

    • Search Google Scholar
    • Export Citation
  • 6.

    Maguina C, Garcia PJ, Gotuzzo E, Cordero L, Spach DH, 2001. Bartonellosis (Carrion's disease) in the modern era. Clin Infect Dis 33: 772779.

  • 7.

    Birtles RJ, Fry NK, Ventosilla P, Caceres AG, Sanchez E, Vizcarra H, Raoult D, 2002. Identification of Bartonella bacilliformis genotypes and their relevance to epidemiological investigations of human bartonellosis. J Clin Microbiol 40: 36063612.

    • Search Google Scholar
    • Export Citation
  • 8.

    Chamberlin J, Laughlin LW, Romero S, Solorzano N, Gordon S, Andre RG, Pachas P, Friedman H, Ponce C, Watts D, 2002. Epidemiology of endemic Bartonella bacilliformis: a prospective cohort study in a Peruvian mountain valley community. J Infect Dis 186: 983990.

    • Search Google Scholar
    • Export Citation
  • 9.

    Ellis BA, Rotz LD, Leake JA, Samalvides F, Bernable J, Ventura G, Padilla C, Villaseca P, Beati L, Regnery R, Childs JE, Olson JG, Carrillo CP, 1999. An outbreak of acute bartonellosis (Oroya fever) in the Urubamba region of Peru, 1998. Am J Trop Med Hyg 61: 344349.

    • Search Google Scholar
    • Export Citation
  • 10.

    Sanchez Clemente N, Ugarte-Gil CA, Solorzano N, Maguina C, Pachas P, Blazes D, Bailey R, Mabey D, Moore D, 2012. Bartonella bacilliformis: a systematic review of the literature to guide the research agenda for elimination. PLoS Negl Trop Dis 6: e1819.

    • Search Google Scholar
    • Export Citation
  • 11.

    Knobloch J, Solano L, Alvarez O, Delgado E, 1985. Antibodies to Bartonella bacilliformis as determined by fluorescence antibody test, indirect hemagglutination and ELISA. Trop Med Parasitol 36: 183185.

    • Search Google Scholar
    • Export Citation
  • 12.

    Chamberlin J, Laughlin L, Gordon S, Romero S, Solorzano N, Regnery RL, 2000. Serodiagnosis of Bartonella bacilliformis infection by indirect fluorescence antibody assay: test development and application to a population in an area of bartonellosis endemicity. J Clin Microbiol 38: 42694271.

    • Search Google Scholar
    • Export Citation
  • 13.

    Knobloch J, 1988. Analysis and preparation of Bartonella bacilliformis antigens. Am J Trop Med Hyg 39: 173178.

  • 14.

    La Scola B, Raoult D, 1996. Serological cross-reactions between Bartonella quintana, Bartonella henselae, and Coxiella burnetii. J Clin Microbiol 34: 22702274.

    • Search Google Scholar
    • Export Citation
  • 15.

    Taye A, Chen H, Duncan K, Zhang Z, Hendrix L, Gonzalez J, Ching W, 2005. Production of recombinant protein Pap31 and its application for the diagnosis of Bartonella bacilliformis infection. Ann N Y Acad Sci 1063: 280285.

    • Search Google Scholar
    • Export Citation
  • 16.

    Dabo SM, Confer AW, Anderson BE, Gupta S, 2006. Bartonella henselae Pap31, an extracellular matrix adhesin, binds the fibronectin repeat III13 module. Infect Immun 74: 25132521.

    • Search Google Scholar
    • Export Citation
  • 17.

    Amano Y, Rumbea J, Knobloch J, Olson J, Kron M, 1997. Bartonellosis in Ecuador: serosurvey and current status of cutaneous verrucous disease. Am J Trop Med Hyg 57: 174179.

    • Search Google Scholar
    • Export Citation
  • 18.

    Kumar R, Indrayan A, 2011. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48: 277287.

  • 19.

    Grimes DA, Schulz KF, 2005. Refining clinical diagnosis with likelihood ratios. Lancet 365: 15001505.

  • 20.

    Linzer D, Lewis J, 2013. poLCA: Polytomous Variable Latent Class Analysis. R package version 1.4.

  • 21.

    Beath K, 2013. randomLCA: Random effects latent class analysis. R package version 0.8–6.

  • 22.

    Sim J, Wright CC, 2005. The kappa statistic in reliability studies: use, interpretation, and sample size requirements. Phys Ther 85: 257268.

    • Search Google Scholar
    • Export Citation
  • 23.

    Knobloch J, Schreiber M, 1990. Bb65, a major immunoreactive protein of Bartonella bacilliformis. Am J Trop Med Hyg 43: 373379.

  • 24.

    Mallqui V, Speelmon EC, Verastegui M, Maguina-Vargas C, Pinell-Salles P, Lavarello R, Delgado J, Kosek M, Romero S, Arana Y, Gilman RH, 2000. Sonicated diagnostic immunoblot for bartonellosis. Clin Diagn Lab Immunol 7: 15.

    • Search Google Scholar
    • Export Citation
  • 25.

    Sander A, Berner R, Ruess M, 2001. Serodiagnosis of cat scratch disease: response to Bartonella henselae in children and a review of diagnostic methods. Eur J Clin Microbiol Infect Dis 20: 392401.

    • Search Google Scholar
    • Export Citation
  • 26.

    Lencakova D, Fingerle V, Stefancikova A, Schulte-Spechtel U, Petko B, Schreter I, Wilske B, 2008. Evaluation of recombinant line immunoblot for detection of Lyme disease in Slovakia: comparison with two other immunoassays. Vector Borne Zoonotic Dis 8: 381390.

    • Search Google Scholar
    • Export Citation
  • 27.

    Reed KD, 2002. Laboratory testing for Lyme disease: possibilities and practicalities. J Clin Microbiol 40: 319324.

  • 28.

    Edkins TJ, Koller-Eichhorn R, Alhadeff JA, Mayer U, Faust H, Del Tito BJ, 2012. Assessment of potential cross-reactivity of human endogenous matrix metalloproteinases with collagenase Clostridium histolyticum antibodies in human sera obtained from patients with Dupuytren's contracture. Clin Vaccine Immunol 19: 562569.

    • Search Google Scholar
    • Export Citation
  • 29.

    Anderson B, Lu E, Jones D, Regnery R, 1995. Characterization of a 17-kilodalton antigen of Bartonella henselae reactive with sera from patients with cat scratch disease. J Clin Microbiol 33: 23582365.

    • Search Google Scholar
    • Export Citation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Evaluation Study of Enzyme-Linked Immunosorbent Assay (ELISA) Using Recombinant Protein Pap31 for Detection of Antibody against Bartonella bacilliformis Infection among the Peruvian Population

View More View Less
  • Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland; Viral and Rickettsial Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, Maryland; Naval Medical Research Institute Detachment, Lima, Peru

Reliable laboratory testing is of great importance to detect Bartonella bacilliformis infection. We evaluated the sensitivity and specificity of the enzyme-linked immunosorbent assay (ELISA) using recombinant protein Pap31 (rPap31) for the detection of antibodies against B. bacilliformis as compared with immunofluorescent assay (IFA). Of the 302 sera collected between 1997 and 2000 among an at-risk Peruvian population, 103 and 34 samples tested positive for IFA-immunoglobulin G (IgG) and IFA-IgM, respectively. By using Youden's index, the cutoff values of ELISA-IgG at 0.915 gave a sensitivity of 84.5% and specificity of 94%. The cutoff values of ELISA-IgM at 0.634 gave a sensitivity of 88.2% and specificity of 85.1%. Using latent class analysis, estimates of sensitivity and specificity of almost all the assays were slightly higher than those of a conventional method of calculation. The test is proved beneficial for discriminating between infected and non-infected individuals with the advantage of low-cost and high-throughput capability.

Author Notes

* Address correspondence to Nasikarn Angkasekwinai, 10500 Rockville Pike, Apt. 1325, Rockville, MD 20852. E-mail: nasikarn@gmail.com

Financial support: This work was supported by Work Unit No. (WUN) 6000.RAD1.J.A0310 (to Naval Medical Research Center) and USUHS grant G187WI.

Disclosure: CCC and WMC are employees of the U. S. Government. This work was prepared as part of their official duties. Title 17 U.S.C. §101 defines a U.S. Government work as a work prepared by an employee of the U.S. Government as part of that person's official duties, and “copyright protection” under this title is not available for any work of the United States Government.

Authors' addresses: Nasikarn Angkasekwinai and John Grieco, Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD, E-mails: nasikarn@gmail.com and jgrieco@usuhs.edu. Erin H. Atkins, Chien Chung Chao, and Wei Mei Ching, Viral and Rickettsial Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, Silver Spring, MD, E-mails: eshuber1@gmail.com, Chien-Chung.Chao@med.navy.mil, and WeiMei.Ching@med.navy.mil. Sofia Romero, Naval Medical Research Institute Detachment, Lima, Peru, E-mail: sofiaromero_m@yahoo.com.

Reprint requests: Wei Mei Ching, Viral and Rickettsial Diseases Department, Infectious Disease Directorate, Naval Medical Research Center, 503 Robert Grant Avenue, RM3N71 Silver Spring, MD 20910.

Save