• 1.

    Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED, 2010. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 9: 6274.

    • Search Google Scholar
    • Export Citation
  • 2.

    Foundation for the National Institutes of Health, 2012. Monitoring Mosquito Transmission of Malaria Workshop. Available at: http://www.fnih.org/work/key-initiatives/vector-based-control-transmission-discovery-research-vctr. Accessed June 18, 2013.

    • Search Google Scholar
    • Export Citation
  • 3.

    Sinka ME, Bangs MJ, Manguin S, Rubio-Palis Y, Chareonviriyaphap T, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Burkot TR, Harbach RE, Hay SI, 2012. A global map of dominant malaria vectors. Parasit Vectors 5: 6979.

    • Search Google Scholar
    • Export Citation
  • 4.

    Eckhoff PA, 2011. A malaria transmission-directed model of mosquito life cycle and ecology. Malar J 10: 303319.

  • 5.

    Chitnis N, Hardy D, Smith T, 2012. A periodically-forced mathematical model for the seasonal dynamics of malaria in mosquitoes. Bull Math Biol 74: 10981124.

    • Search Google Scholar
    • Export Citation
  • 6.

    White MT, Griffin JT, Churcher TS, Ferguson NM, Basanez MG, Ghani AC, 2011. Modelling the impact of vector control interventions on Anopheles gambiae population dynamics. Parasit Vectors 4: 153166.

    • Search Google Scholar
    • Export Citation
  • 7.

    Smallegange RC, Qiu YT, Bukovinszkiné-Kiss G, Van Loon JJ, Takken W, 2009. The effect of aliphatic carboxylic acids on olfaction-based host-seeking of the malaria mosquito Anopheles gambiae. J Chem Ecol 35: 933943.

    • Search Google Scholar
    • Export Citation
  • 8.

    Verhulst NO, Mbadi PA, Kiss GB, Mukabana WR, van Loon JJ, Takken W, Smallegange RC, 2011. Improvement of a synthetic lure for Anopheles gambiae using compounds produced by human skin microbiota. Malar J 10: 2837.

    • Search Google Scholar
    • Export Citation
  • 9.

    Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, van Loon JJ, Takken W, 2012. A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol 38: 235244.

    • Search Google Scholar
    • Export Citation
  • 10.

    Turner SL, Li N, Guda T, Githure J, Cardé RT, Ray A, 2011. Ultra-prolonged activation of CO2-sensing neurons disorients mosquitoes. Nature 474: 8791.

    • Search Google Scholar
    • Export Citation
  • 11.

    Diabate A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T, 2011. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol 11: 184196.

    • Search Google Scholar
    • Export Citation
  • 12.

    Muller GC, Beier JC, Traore SF, Toure MB, Traore MM, Bah S, Doumbia S, Schlein Y, 2010. Successful field trial of attractive toxic sugar bait (ATSB) plant spraying methods against malaria vectors in the Anopheles gambiae complex in Mali, West Africa. Malar J 9: 210216.

    • Search Google Scholar
    • Export Citation
  • 13.

    Foster WA, 2008. Phytochemicals as population sampling lures. J Am Mosq Control Assoc 24: 138146.

  • 14.

    Burkot TR, Russel TL, Reimer LJ, Bugoro H, Beebe NW, Cooper RD, Sukawati S, Collins FH, Lobo NF, 2013. Barrier screens: a method to sample blood-fed and host-seeking exophilic mosquitoes. Malar J 12: 4957.

    • Search Google Scholar
    • Export Citation
  • 15.

    Loaiza JR, Bermingham E, Sanjur OI, Scott ME, Bickersmith SA, Conn JE, 2012. Review of genetic diversity in malaria vectors (Culicidae: Anophelinae). Infect Genet Evol 12: 112.

    • Search Google Scholar
    • Export Citation
  • 16.

    Mosquito Barcoding Initiative, 2011. Available at: http://www.mosquitobarcode.org. Accessed June 18, 2013.

  • 17.

    Barcode of Life Database, 2013. Available at: http://www.Boldsystems.org. Accessed June 18, 2013.

  • 18.

    Reddy MR, Overgaard HJ, Abaga S, Reddy VP, Caccone A, Kiszewski AE, Slotman MA, 2011. Outdoor host-seeking behavior of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10: 184193.

    • Search Google Scholar
    • Export Citation
  • 19.

    Russell TL, Beebe NW, Cooper RD, Lobo NE, Burkot TR, 2013. Successful malaria elimination strategies require interventions that target changing vector behaviors. Malar J 12: 5960.

    • Search Google Scholar
    • Export Citation
  • 20.

    Severson DW, Behura SK, 2012. Mosquito genomics: progress and challenges. Annu Rev Entomol 57: 143166.

  • 21.

    Cohuet A, Harris C, Robert V, Fontenille D, 2010. Evolutionary forces on Anopheles: what makes a malaria vector? Trends Parasitol 26: 130136.

  • 22.

    Sikulu M, Killeen GF, Hugo LE, Ryan PA, Dowell KM, Wirtz RA, Moore SJ, Dowell FE, 2010. Near-infrared spectroscopy as a complementary age grading and species identification tool for African malaria vectors. Parasit Vectors 3: 4955.

    • Search Google Scholar
    • Export Citation
  • 23.

    Cook PE, Sinkins SP, 2010. Transcriptional profiling of Anopheles gambiae mosquitoes for adult age estimation. Insect Mol Biol 19: 745751.

    • Search Google Scholar
    • Export Citation
  • 24.

    Wang MH, Marinotti O, James AA, Walker E, Githure J, Yan G, 2010. Genome-wide patterns of gene expression during aging in the African malaria vector Anopheles gambiae. PLoS ONE 5: e13359.

    • Search Google Scholar
    • Export Citation
  • 25.

    Desena ML, Edman JD, Clark JM, Symington SB, Scott TW, 1999. Aedes aegypti (Diptera: Culicidae) age determination by cuticular hydrocarbon analysis of female legs. J Med Entomol 36: 824830.

    • Search Google Scholar
    • Export Citation
  • 26.

    Suarez E, Nguyen HP, Ortiz IP, Lee KJ, Kim SB, Krzywinski J, Schug KA, 2011. Matrix assisted laser desorption/ionization–mass spectrometry of cuticular lipid profiles can differentiate sex, age and mating status of Anopheles gambiae mosquitoes. Anal Chim Acta 706: 157163.

    • Search Google Scholar
    • Export Citation
  • 27.

    Kelly-Hope LA, McKenzie FE, 2009. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8: 1934.

    • Search Google Scholar
    • Export Citation
  • 28.

    Proux S, Suwanarusk R, Barends M, Zwang J, Price RN, Leimanis M, Kiricharoen L, Laochan N, Russell B, Nosten F, Snounou G, 2011. Considerations on the use of nucleic acid-based amplification for malaria parasite detection. Malar J 10: 323330.

    • Search Google Scholar
    • Export Citation
  • 29.

    Drame PM, Poinsignon A, Besnard P, Cornelie S, Le Mire J, Toto JC, Foumane V, Dos-Santos MA, Sembène M, Fortes F, Simondon F, Carnevale P, Remoue F, 2010. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS ONE 5: e15596.

    • Search Google Scholar
    • Export Citation
  • 30.

    Stone W, Bousema T, Jones S, Gesase S, Hashim R, Gosling R, Carneiro I, Chandramohan D, Theander T, Ronca R, Modiano D, Arcà B, Drakeley C, 2012. IgG responses to Anopheles gambiae salivary antigen gSG6 detect variation in exposure to malaria vectors and disease risk. PLoS ONE 7: e40170.

    • Search Google Scholar
    • Export Citation
  • 31.

    Sagna AB, Sarr JB, Gaayeb L, Drame PM, Ndiath MO, Senghor S, Sow CS, Poinsignon A, Seck M, Hermann E, Schacht AM, Faye N, Sokhna C, Remoue F, Riveau G, 2013. gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to Anopheles bites in low and seasonal malaria areas. Parasit Vectors 6: 6877.

    • Search Google Scholar
    • Export Citation
  • 32.

    Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, Masika P, Mosha J, Bousema T, Shekalaghe S, Cook J, Corran P, Ghani A, Riley EM, Drakeley C, 2009. Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLoS ONE 4: e6083.

    • Search Google Scholar
    • Export Citation
  • 33.

    Corran P, Coleman P, Riley E, Drakeley C, 2007. Serology: a robust indicator of malaria transmission intensity? Trends Parasitol 23: 575582.

  • 34.

    Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, Mosha F, Otieno S, Carneiro I, Cox J, Msuya E, Kleinschmidt I, Maxwell C, Greenwood B, Riley E, Sauerwein R, Chandramohan D, Gosling R, 2010. Identification of hotspots of malaria transmission for targeted malaria control. J Infect Dis 201: 17641774.

    • Search Google Scholar
    • Export Citation
  • 35.

    Estevez PT, Satoguina J, Nwakanma DC, West S, Conway DJ, Drakeley C, 2011. Human saliva as a source of anti-malarial antibodies to examine population exposure to Plasmodium falciparum. Malar J 10: 104111.

    • Search Google Scholar
    • Export Citation
  • 36.

    Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, Doumbo OK, Greenwood B, Hall BF, Levine MM, Mendis K, Newman RD, Plowe CV, Rodríguez MH, Sinden R, Slutsker L, Tanner M, 2011. A research agenda to underpin malaria eradication. PLoS Med 8: e1000406.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 

 

 

 

 

 

 

Needs for Monitoring Mosquito Transmission of Malaria in a Pre-Elimination World

View More View Less
  • Science Division, Foundation for the National Institutes of Health, Bethesda, Maryland; Laboratory of Entomology, Wageningen University and Research Center, Wageningen, The Netherlands; University of Notre Dame, Notre Dame, Indiana

As global efforts to eliminate malaria intensify, accurate information on vector populations and transmission dynamics is critical for directing control efforts, developing new control tools, and predicting the effects of these interventions under various conditions. Currently available sampling tools for mosquito population monitoring suffer from well-recognized limitations. As reported in this workshop summary, a recent gathering of medical entomologists, modelers, and malaria experts reviewed these issues and agreed that efforts are needed to improve methods to monitor key transmission parameters. Identified needs include standardized methods for sampling of both mosquito adults and larvae, improved tools for mosquito species identification and age-grading, and a better means for determining the entomological inoculation rate.

Author Notes

* Address correspondence to Stephanie James, Science Division, Foundation for the National Institutes of Health, 9650 Rockville Pike, Bethesda, MD 20814. E-mail: sjames@fnih.org

Financial support: Support was provided by the Foundation for the National Institutes of Health through the Vector-Based Control of Transmission: Discovery Research Program of the Grand Challenges in Global Health Initiative.

Authors' addresses: Stephanie James and Michael Gottlieb, Science Division, Foundation for the National Institutes of Health, Bethesda, MD, E-mails: sjames@fnih.org and mgottlieb@fnih.org. Willem Takken, Laboratory of Entomology, Wageningen University and Research Center, Wageningen, The Netherlands, E-mail: willem.takken@wur.nl. Frank H. Collins, Notre Dame University, Department of Biological Sciences, Notre Dame, IN, E-mail: frank@nd.edu.

Save