• 1.

    Tabachnick WJ, 1991. Evolutionary genetics and arthropod-borne disease: the yellow fever mosquito. Am Entomol 37: 1426.

  • 2.

    Josseran L, Paquet C, Zehgnoun A, Caillere N, Le Tertre A, Solet JL, Ledrans M, 2006. Chikungunya disease outbreak, Reunion Island. Emerg Infect Dis 12: 19941995.

    • Search Google Scholar
    • Export Citation
  • 3.

    Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A; Chikv Study Group, 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846.

    • Search Google Scholar
    • Export Citation
  • 4.

    Pinheiro FP, Corber SJ, 1997. Global situation of dengue and dengue haemorrhagic fever, and its emergence in the Americas. World Health Stat Q 50: 161169.

    • Search Google Scholar
    • Export Citation
  • 5.

    Gubler DJ, Reiter P, Ebi KL, Yap W, Nasci R, Patz JA, 2001. Climate variability and change in the United States: potential impacts on vector- and rodent-borne diseases. Environ Health Perspect 109 (Suppl 2): 223233.

    • Search Google Scholar
    • Export Citation
  • 6.

    Anderson M, 2009. Dengue Virus Returns to Florida After More Than 50 Years, UF Researchers Say. Available at: news.ufl.edu/2009/11/23/dengue/. Accessed December 20, 2011.

    • Search Google Scholar
    • Export Citation
  • 7.

    Merrill SA, Ramberg FB, Hagedorn HH, 2005. Phylogeography and population structure of Aedes aegypti in Arizona. Am J Trop Med Hyg 72: 304310.

    • Search Google Scholar
    • Export Citation
  • 8.

    Soper FL, 1965. The 1964 status of Aedes aegypti eradication and yellow fever in the Americas. Am J Trop Med Hyg 14: 887891.

  • 9.

    Moncayo AC, Fernandez Z, Ortiz D, Diallo M, Sall A, Hartman S, Davis CT, Coffey L, Mathiot CC, Tesh RB, Weaver SC, 2004. Dengue emergence and adaptation to peridomestic mosquitoes. Emerg Infect Dis 10: 17901796.

    • Search Google Scholar
    • Export Citation
  • 10.

    Harrington LC, Edman JD, Scott TW, 2001. Why do female Aedes aegypti (Diptera: Culicidae) feed preferentially and frequently on human blood? J Med Entomol 38: 411422.

    • Search Google Scholar
    • Export Citation
  • 11.

    Duenas JC, Llinas GA, Panzetia-Dutari GM, Gardenal CN, 2009. Two different routes of colonization of Aedes aegypti in Argentina from neighboring countries. J Med Entomol 46: 13441354.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gill J, Stark LM, Clark GG, 2000. Dengue surveillance in Florida, 1997–98. Emerg Infect Dis 6: 3035.

  • 13.

    O'Meara GF, Evans LF, Gettman AD, Cuda JP, 1995. Spread of Aedes albopictus and decline of Aedes aegypti (Diptera: Culicidae) in Florida. J Med Entomol 32: 554562.

    • Search Google Scholar
    • Export Citation
  • 14.

    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9: 8689.

    • Search Google Scholar
    • Export Citation
  • 15.

    Goncalves da Silva A, Cunha IC, Santos WS, Luz SL, Ribolla PE, Abad-Franch F, 2012. Gene flow networks among American Aedes aegypti populations. Evol Appl 5: 664676.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG, 2001. The population biology of invasive species. Annu Rev Ecol Syst 32: 305332.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lee CE, 2002. Evolutionary genetics of invasive species. Trends Ecol Evol 17: 386391.

  • 18.

    Kolar CS, Lodge DM, 2001. Progress in invasion biology: predicting invaders. Trends Ecol Evol 16: 199204.

  • 19.

    Kolbe JJ, Glor RE, Rodriguez Schettino L, Lara AC, Larson A, Losos JB, 2004. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431: 177181.

    • Search Google Scholar
    • Export Citation
  • 20.

    Price TD, Sol D, 2008. Introduction: genetics of colonizing species. Am Nat 172 (Suppl 1): S1S3.

  • 21.

    Yakob L, Alphey L, Bonsall MB, 2008. Aedes aegypti control: the concomitant role of competition, space and transgenic technologies. J Appl Ecol 45: 12581265.

    • Search Google Scholar
    • Export Citation
  • 22.

    Huber K, Mousson L, Rodhain F, Failloux AB, 2001. Isolation and variability of polymorphic microsatellite loci in Aedes aegypti, the vector of dengue viruses. Mol Ecol Notes 1: 219222.

    • Search Google Scholar
    • Export Citation
  • 23.

    Birungi J, Munstermann LE, 2002. Genetic structure of Aedes albopictus (Diptera: Culicidae) populations based on mitochondrial ND5 sequences: evidence for an independent invasion into Brazil and United States. Ann Entomol Soc Am 95: 125132.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gorrochotegui-Escalante N, Munoz ML, Fernandez-Salas I, Beaty BJ, Black WC, 2000. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am J Trop Med Hyg 62: 200209.

    • Search Google Scholar
    • Export Citation
  • 25.

    Bosio CF, Harrington LC, Jones JW, Sithiprasasna R, Norris DE, Scott TW, 2005. Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. Am J Trop Med Hyg 72: 434442.

    • Search Google Scholar
    • Export Citation
  • 26.

    Costa-da-Silva AL, Capurro ML, Bracco JE, 2005. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem Inst Oswaldo Cruz 100: 539544.

    • Search Google Scholar
    • Export Citation
  • 27.

    Herrera F, Urdaneta L, Rivero J, Zoghbi N, Ruiz J, Carrasquel G, Martínez JA, Pernalete M, Villegas P, Montoya A, 2006. Population genetic structure of the dengue mosquito Aedes aegypti in Venezuela. Mem Inst Oswaldo Cruz 101: 625633.

    • Search Google Scholar
    • Export Citation
  • 28.

    Paduan KDS, Ribolla PEM, 2008. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J Med Entomol 45: 5967.

    • Search Google Scholar
    • Export Citation
  • 29.

    Bracco JE, Capurro ML, Lourenço-de-Oliveira R, Sallum MAM, 2007. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: evidence of multiple introductions. Mem Inst Oswaldo Cruz 102: 573580.

    • Search Google Scholar
    • Export Citation
  • 30.

    Moore M, Sylla M, Goss L, Burugu MW, Sang R, Kamau LW, Kenya EU, Bosio C, de Lourdes Munoz M, Sharakova M, 2013. Dual African origins of global Aedes aegypti sl populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7: e2175.

    • Search Google Scholar
    • Export Citation
  • 31.

    Szalanski AL, Owens CB, Lewter JA, Broce AB, 2006. Genetic structure of Aedes vexans (Diptera: Culicidae) populations from central United States based on mitochondrial ND5 sequences. Ann Entomol Soc Am 99: 157163.

    • Search Google Scholar
    • Export Citation
  • 32.

    Venkatesan M, Westbrook CJ, Hauer MC, Rasgon JL, 2007. Evidence for a population expansion in the West Nile virus vector Culex tarsalis. Mol Biol Evol 24: 12081218.

    • Search Google Scholar
    • Export Citation
  • 33.

    Simard F, Licht M, Besansky NJ, Lehmann T, 2007. Polymorphism at the defensin gene in the Anopheles gambiae complex: testing different selection hypotheses. Infect Genet Evol 7: 285292.

    • Search Google Scholar
    • Export Citation
  • 34.

    Galtier N, Gouy M, Gautier C, 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12: 543548.

    • Search Google Scholar
    • Export Citation
  • 35.

    Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 14511452.

  • 36.

    Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750.

    • Search Google Scholar
    • Export Citation
  • 37.

    Slatkin M, 1993. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47: 264279.

  • 38.

    Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.

  • 39.

    Simonsen KL, Churchill GA, Aquadro CF, 1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141: 413429.

  • 40.

    Nielsen R, 2001. Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb) 86: 641647.

  • 41.

    Kumar S, Tamura K, Nei M, 2004. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5: 150163.

    • Search Google Scholar
    • Export Citation
  • 42.

    Legendre P, Fortin M-J, 2010. Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Resour 10: 831844.

    • Search Google Scholar
    • Export Citation
  • 43.

    Manly BFJ, 1997. RT, A Program for Randomization Testing. Dunedin, New Zealand: University of Otago, Center for Applications of Statistics and Mathematics.

    • Search Google Scholar
    • Export Citation
  • 44.

    Fortin M-J, Payett S, 2002. How to test the significance of the relation between spatially autocorrelated data at the landscape scale: a case study using fire and forest maps. Ecoscience 9: 213218.

    • Search Google Scholar
    • Export Citation
  • 45.

    Dupanloup I, Schneider S, Excoffier L, 2002. A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11: 25712581.

    • Search Google Scholar
    • Export Citation
  • 46.

    Huber K, Loan LL, Chantha N, Failloux AB, 2004. Human transportation influences Aedes aegypti gene flow in Southeast Asia. Acta Trop 90: 2329.

  • 47.

    Gorrochotegui-Escalante N, Gomez-Machorro C, Lozano-Fuentes S, Fernandez-Salas I, Munoz ML, Farfan-Ale JA, Garcia-Rejon J, Beaty BJ, Black WC IV, 2002. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am J Trop Med Hyg 66: 213222.

    • Search Google Scholar
    • Export Citation
  • 48.

    Paupy C, Chantha N, Reynes JM, Failloux AB, 2005. Factors influencing the population structure of Aedes aegypti from the main cities in Cambodia. Heredity (Edinb) 95: 144147.

    • Search Google Scholar
    • Export Citation
  • 49.

    Hemme RR, Thomas CL, Chadee DD, Severson DW, 2010. Influence of urban landscapes on population dynamics in a short-distance migrant mosquito: evidence for the dengue vector Aedes aegypti. PLoS Negl Trop Dis 4: e634.

    • Search Google Scholar
    • Export Citation
  • 50.

    Haag CR, Riek M, Hottinger JW, Pajunen VI, Ebert D, 2005. Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age. Genetics 170: 18091820.

    • Search Google Scholar
    • Export Citation
  • 51.

    Premoli AC, Chischilly S, Mitton JB, 1994. Levels of genetic variation captured by four descendant populations of Pinyon pine (Pinus edulis Engelm.). Biodivers Conserv 3: 331340.

    • Search Google Scholar
    • Export Citation
  • 52.

    Clegg SM, Degnan SM, Kikkawa J, Moritz C, Estoup A, Owens IP, 2002. Genetic consequences of sequential founder events by an island-colonizing bird. Proc Natl Acad Sci USA 99: 81278132.

    • Search Google Scholar
    • Export Citation
  • 53.

    Abdelkrim J, Pascal M, Samadi S, 2005. Island colonization and founder effects: the invasion of the Guadeloupe islands by ship rats (Rattus rattus). Mol Ecol 14: 29232931.

    • Search Google Scholar
    • Export Citation
  • 54.

    Lima RS Jr, Scarpassa VM, 2009. Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet Mol Biol 32: 414422.

    • Search Google Scholar
    • Export Citation
  • 55.

    Fonseca DM, Widdel AK, Hutchinson M, Spichiger SE, Kramer LD, 2010. Fine-scale spatial and temporal population genetics of Aedes japonicus, a new US mosquito, reveal multiple introductions. Mol Ecol 19: 15591572.

    • Search Google Scholar
    • Export Citation
  • 56.

    Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, Chang MS, Walton C, 2009. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet 10: 11.

    • Search Google Scholar
    • Export Citation
  • 57.

    Black WC, Bernhardt S, 2009. Abundant nuclear copies of mitochondrial origin (NUMTs) in the Aedes aegypti genome. Insect Mol Biol 18: 705713.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 

 

 

 

 

 

 

 

Phylogeography of Aedes aegypti (Yellow Fever Mosquito) in South Florida: mtDNA Evidence for Human-Aided Dispersal

View More View Less
  • School of Biological Sciences, Illinois State University, Normal, Illinois; Wadsworth Center, New York State Department of Health, Albany, New York

The invasive dengue vector Aedes aegypti has persisted for > 200 years in South Florida in the United States. We tested the hypotheses that Florida's landscape creates dispersal barriers and corridors and that long-distance human-aided dispersal structures populations of Ae. aegypti. We evaluated the phylogeography of 362 individuals from Florida's East and West Coasts with a 760-bp (418- and 342-bp fragments of ND5 and ND4, respectively) mitochondrial sequence. Populations from these two coasts were not significantly differentiated, suggesting that limited urbanization in central Florida is not a strong barrier to gene flow. Evidence for long-distance dispersal between Ft. Lauderdale and the West and Ft. Myers and the East indicates the importance of human-aided dispersal. West Coast populations showed no genetic differentiation, indicating that West Coast rivers and bays did not significantly impede gene flow. Phylogeographic analysis of haplotypes showed two distinct matrilines with no geographic patterns, suggesting multiple introductions or balancing selection.

Author Notes

* Address correspondence to Kavitha Damal, Division of Epidemiology, University of Utah, Salt Lake City, UT 84108. E-mail: Kavitha.damal@hsc.utah.edu

Financial support: This study was funded by Phi Sigma and Graduate Student Association Grants from Illinois State University (to K.D.), National Institutes of Health Grant AI R15-068692-01 (to S.A.J. and S.S.L.), and a grant from Illinois State University (to S.A.J.).

Authors' addresses: Kavitha Damal, Steven A. Juliano, and Sabine S. Loew, School of Biological Sciences, Illinois State University, Normal, IL, E-mails: Kavitha.damal@hsc.utah.edu, sajulian@ilstu.edu, and ssloew@ilstu.edu. Ebony G. Murrell, Department of Entomology, University of Wisconsin, Madison, WI, E-mail: murrell2@wisc.edu. Jan E. Conn, Wadsworth Center, NYS Department of Health, Albany, NY, E-mail: jconn@wadsworth.org.

Save