The Role of Innate versus Adaptive Immune Responses in a Mouse Model of O'Nyong-Nyong Virus Infection

Robert L. Seymour Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Robert L. Seymour in
Current site
Google Scholar
PubMed
Close
,
Shannan L. Rossi Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Shannan L. Rossi in
Current site
Google Scholar
PubMed
Close
,
Nicholas A. Bergren Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Nicholas A. Bergren in
Current site
Google Scholar
PubMed
Close
,
Kenneth S. Plante Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Kenneth S. Plante in
Current site
Google Scholar
PubMed
Close
, and
Scott C. Weaver Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, Texas

Search for other papers by Scott C. Weaver in
Current site
Google Scholar
PubMed
Close
Restricted access

O'nyong-nyong virus (ONNV), an alphavirus closely related to chikungunya virus (CHIKV), has caused three major epidemics in Africa since 1959. Both ONNV and CHIKV produce similar syndromes with fever, rash, and debilitating arthralgia. To determine the roles of the innate and adaptive immune responses, we infected different knockout mice with two strains of ONNV (SG650 and MP30). Wild-type, RAG1 KO, and IFNγR KO mice showed no signs of illness or viremia. The STAT1 KO and A129 mice exhibited 50–55% mortality when infected with SG650. Strain SG650 was more virulent in the STAT1 KO and A129 than MP30. Deficiency in interferon α/β signaling (A129 and STAT1 KO) leaves mice susceptible to lethal disease; whereas a deficiency of interferon γ signaling alone had no effect on survival. Our findings highlight the importance of type I interferon in protection against ONNV infection, whereas the adaptive immune system is relatively unimportant in the acute infection.

Author Notes

* Address correspondence to Scott C. Weaver, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0610. E-mail: sweaver@utmb.edu

Financial support: This work was supported by a grant from the National Institute of Allergy and Infectious Disease (NIAID) through the Western Regional Center of Excellence for Biodefense and Emerging Infectious Disease Research, National Institutes of Health (NIH) grant U54 AIO57156, and by NIH grants AI082202 and AI093491. RLS was supported by NIH grant 5T32AI-007536. SLR was supported by NIH grant 5T3AI-007536. KSP was supported by NIH grant 5T327526-12.

Authors' addresses: Robert L. Seymour, Shannan L. Rossi, Nicholas A. Bergren, Kenneth S. Plante, and Scott C. Weaver, Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, TX, E-mails: rlseymou@utmb.edu, slrossi@utmb.edu, nabergre@utmb.edu, ksplante@utmb.edu, and sweaver@utmb.edu.

  • 1.

    Enserink M, 2006. Infectious diseases. Massive outbreak draws fresh attention to little-known virus. Science 311: 1085.

  • 2.

    Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav JM, Sudeep AB, Mishra AC, 2007. Genetic divergence of Chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol 88: 19671976.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL, Lee KS, Tan LK, Lin RT, Ng LF, Bucht G, Abeyewickreme W, Ng LC, 2009. Re-emergence of Chikungunya virus in south-east Asia: virological evidence from Sri Lanka and Singapore. J Gen Virol 91: 10671076.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Charrel RN, de Lamballerie X, Raoult D, 2007. Chikungunya outbreaks–the globalization of vectorborne diseases. N Engl J Med 356: 769771.

  • 5.

    Pialoux G, Gauzere BA, Jaureguiberry S, Strobel M, 2007. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis 7: 319327.

  • 6.

    Robin S, Ramful D, Le Seach F, Jaffar-Bandjee MC, Rigou G, Alessandri JL, 2008. Neurologic manifestations of pediatric Chikungunya infection. J Child Neurol 23: 10281035.

  • 7.

    Haddow AJ, Davies CW, Walker AJ, 1960. O'nyong-nyong fever: an epidemic virus disease in East Africa. 1. Introduction. Trans R Soc Trop Med Hyg 54: 517522.

  • 8.

    Kiwanuka N, Sanders EJ, Rwaguma EB, Kawamata J, Ssengooba FP, Najjemba R, Were WA, Lamunu M, Bagambisa G, Burkot TR, Dunster L, Lutwama JJ, Martin DA, Cropp CB, Karabatsos N, Lanciotti RS, Tsai TF, Campbell GL, 1999. O'nyong-nyong fever in south-central Uganda, 1996–1997: clinical features and validation of a clinical case definition for surveillance purposes. Clin Infect Dis 29: 12431250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Sanders EJ, Rwaguma EB, Kawamata J, Kiwanuka N, Lutwama JJ, Sengooba FP, Lamunu M, Najjemba R, Were WA, Bagambisa G, Campbell GL, 1999. O'nyong-nyong fever in south-central Uganda, 1996–1997: description of the epidemic and results of a household-based seroprevalence survey. J Infect Dis 180: 14361443.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Lanciotti RS, Ludwig ML, Rwaguma EB, Lutwama JJ, Kram TM, Karabatsos N, Cropp BC, Miller BR, 1998. Emergence of epidemic O'nyong-nyong fever in Uganda after a 35-year absence: genetic characterization of the virus. Virology 252: 258268.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Posey D, O'Rourke T, Roherig JT, Lanciotti RS, Weinberg M, Maloney S, 2005. O'nyong-nyong fever in West Africa. Am J Trop Med Hyg 73: 32.

  • 12.

    Tesh RB, 1982. Arthritides caused by mosquito-borne viruses. Annu Rev Med 33: 3140.

  • 13.

    Williams MC, Woodall JP, Porterfield JS, 1962. O'nyong-nyong fever: an epidemic virus disease in East Africa. V. Human antibody studies by plaque inhibition and other serological tests. Trans R Soc Trop Med Hyg 56: 166172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Powers AM, Brault AC, Tesh RB, Weaver SC, 2000. Re-emergence of Chikungunya and O'nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 81: 471479.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Grandadam M, Caro V, Plumet S, Thiberge JM, Souarès Y, Failloux AB, Tolou HJ, Budelot M, Cosserat D, Leparc-Goffart I, Despres P, 2011. Chikungunya virus, southeastern France. Emerg Infect Dis 17: 910913.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Johnson BK, Gichogo A, Gitau G, Patel N, Ademba G, Kirui R, Highton RB, Smith DH, 1981. Recovery of O'nyong-nyong virus from Anopheles funestus in western Kenya. Trans R Soc Trop Med Hyg 75: 239241.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Williams MC, Woodall JP, Corbert PS, Gillett JD, 1965. O'nyong-nyong fever: an epidemic virus disease in East Africa. 8. Virus isolations from Anopheles mosquitoes. Trans R Soc Trop Med Hyg 59: 300306.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Beaty BJ, Calisher CH, Shope RE, 1989. Arboviruses. Schmidt NJ, Emmons RW, eds. Diagnostic Procedures for Viral, Rickettsial and Chlamydial Infections. Sixth edition. Washington, DC: American Public Health Association, 797855.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Plante K, Wang E, Partidos CD, Weger J, Gorchakov R, Tsetsarkin K, Borland EM, Powers AM, Seymour R, Stinchcomb DT, Osorio JE, Frolov I, Weaver SC, 2011. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog 7: e1002142.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Partidos CD, Weger J, Brewoo J, Seymour R, Borland EM, Ledermann JP, Powers AM, Weaver SC, Stinchcomb DT, Osorio JE, 2011. Probing the attenuation and protective efficacy of a candidate Chikungunya virus vaccine in mice with compromised interferon (IFN) signaling. Vaccine 29: 30673073.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Smith DR, Carrara AS, Aguilar PV, Weaver SC, 2005. Evaluation of methods to assess transmission potential of Venezuelan equine encephalitis virus by mosquitoes and estimation of mosquito saliva titers. Am J Trop Med Hyg 73: 3339.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Labadie K, Larcher T, Joubert C, Mannioui A, Delache B, Brochard P, Guigand L, Dubreil L, Lebon P, Verrier B, de Lamballerie X, Suhrbier A, Cherel Y, Le Grand R, Roques P, 2010. Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120: 894906.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Herrero LJ, Nelson M, Srikiatkhachorn A, Gu R, Anantapreecha S, Fingerle-Rowson G, Bucala R, Morand E, Santos LL, Mahalingam S, 2011. Critical role for macrophage migration inhibitory factor (MIF) in Ross River virus-induced arthritis and myositis. Proc Natl Acad Sci USA 108: 1204812053.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Rulli NE, Rolph MS, Srikiatkhachorn A, Anantapreecha S, Guglielmotti A, Mahalingam S, 2011. Protection from arthritis and myositis in a mouse model of acute Chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J Infect Dis 204: 10261030.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gunn BM, Morrison TE, Whitmore AC, Blevins LK, Hueston L, Fraser RJ, Herrero LJ, Ramirez R, Smith PN, Mahalingam S, Heise MT, 2012. Mannose binding lectin is required for alphavirus-induced arthritis/myositis. PLoS Pathog 8: e1002586.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Morrison TE, Simmons JD, Heise MT, 2008. Complement receptor 3 promotes severe Ross River virus-induced disease. J Virol 82: 1126311272.

  • 27.

    Morrison TE, Fraser RJ, Smith PN, Mahalingam S, Heise MT, 2007. Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. J Virol 81: 51325143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Couderc T, Chrétien F, Schilte C, Disson O, Brigitte M, Guivel-Benhassine F, Touret Y, Barau G, Cayet N, Schuffnecker I, Depres P, Arenzana-Seisdedos F, Michault A, Albert ML, Lecuit M, 2008. A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4: e29.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Schilte C, Couderc T, Chretien F, Sourisseau M, Gangneux N, Guivel-Benhassine F, Kraxner A, Tschopp J, Higgs S, Michault A, Arenzana-Seisdedos F, Colonna M, Peduto L, Schwartz O, Lecuit M, Albert ML, 2010. Type I IFN controls Chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207: 429442.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kelvin AA, Banner D, Silvi G, Moro ML, Spataro N, Gaibani P, Cavrini F, Pierro A, Rossini G, Cameron MJ, Bermejo-Martin JF, Paquette SG, Xu L, Danesh A, Farooqui A, Borghetto I, Kelvin DJ, Sambri V, Rubino S, 2011. Inflammatory cytokine expression is associated with Chikungunya virus resolution and symptom severity. PLoS Negl Trop Dis 5: e1279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Chaaitanya IK, Muruganandam N, Sundaram SG, Kawalekar O, Sugunan AP, Manimunda SP, Ghosal SR, Muthumani K, Vijayachari P, 2011. Role of proinflammatory cytokines and chemokines in chronic arthropathy in CHIKV infection. Viral Immunol 24: 265271.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chow A, Her Z, Ong EK, Chen JM, Dimatatac F, Kwek DJ, Barkham T, Yang H, Rénia L, Leo YS, Ng LF, 2011. Persistent arthralgia induced by Chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J Infect Dis 203: 149157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nakaya HI, Gardner J, Poo YS, Major L, Pulendran B, Suhrbier A, 2012. Gene profiling of Chikungunya virus arthritis reveals significant overlap with rheumatoid arthritis. Arthritis Rheum 64: 35533563.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Cruz CC, Suthar MS, Montgomery SA, Shabman R, Simmons J, Johnston RE, Morrison TE, Heise MT, 2010. Modulation of type I IFN induction by a virulence determinant within the alphavirus nsP1 protein. Virology 399: 110.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Gardner CL, Yin J, Burke CW, Klimstra WB, Ryman KD, 2009. Type I interferon induction is correlated with attenuation of a South American eastern equine encephalitis virus strain in mice. Virology 390: 338347.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Burke CW, Gardner CL, Steffan JJ, Ryman KD, Klimstra WB, 2009. Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses. Virology 395: 121132.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Simmons JD, White LJ, Morrison TE, Montgomery SA, Whitmore AC, Johnston RE, Heise MT, 2009. Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff. J Virol 83: 1057110581.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Partidos CD, Paykel J, Weger J, Borland EM, Powers AM, Seymour R, Weaver SC, Stinchomb DT, Osorio JE, 2012. Cross-protective immunity against O'nyong-nyong virus afforded by a novel recombinant Chikungunya vaccine. Vaccine 30: 46384643.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gardner CL, Burke CW, Higgs ST, Klimstra WB, Ryman KD, 2012. Interferon-alpha/beta deficiency greatly exacerbates arthrogenic disease in min infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate. Virology 425: 103112.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Morrison TE, Oko L, Montgomery SA, Whitmore AC, Lotstein AR, Gunn BM, Elmore SA, Heise MT, 2011. A mouse model of Chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am J Pathol 178: 3240.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Gardner J, Anraku I, Le TT, Larcher T, Major L, Roques P, Schroder WA, Higgs S, Suhrbier A, 2010. Chikungunya virus arthritis in adult wild-type mice. J Virol 84: 80218032.

  • 42.

    Ziegler SA, Lu L, da Rosa AP, Xiao SY, Tesh RB, 2008. An animal model for studying the pathogenesis of Chikungunya virus infection. Am J Trop Med Hyg 79: 133139.

  • 43.

    Obeyesekere I, Hermon Y, 1972. Myocarditis and cardiomyopathy after arbovirus infections (dengue and Chikungunya fever). Br Heart J 34: 821827.

  • 44.

    Obeyesekere I, Hermon Y, 1973. Arbovirus heart disease: myocarditis and cardiomyopathy following dengue and Chikungunya fever–a follow-up study. Am Heart J 85: 186194.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Morrison TE, Fraser RJ, Smith PN, Mahalingam S, Heise MT, 2007. Complement contributes to inflammatory tissue destruction in a mouse model of Ross River virus-induced disease. J Virol 81: 51325143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Rulli NE, Guglielmotti A, Mangano G, Rolph MS, Apicella C, Zaid A, Suhrbier A, Mahalingam S, 2009. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum 60: 25132523.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Griffin DE, 1976. Role of the immune response in age-dependent resistance of mice to encephalitis due to Sindbis virus. J Infect Dis 133: 456464.

  • 48.

    Fleming P, 1977. Age-dependent and strain-related differences of virulence of Semliki Forest virus in mice. J Gen Virol 37: 93105.

  • 49.

    Jackson AC, Moench TR, Griffin DE, Johnson RT, 1987. The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. Lab Invest 56: 418423.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Johnson RT, McFarland HF, Levy SE, 1972. Age-dependent resistance to viral encephalitis: studies of infections due to Sindbis virus in mice. J Infect Dis 125: 257262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Labrada L, Liang XH, Zheng W, Johnston C, Levine B, 2002. Age-dependent resistance to lethal alphavirus encephalitis in mice: analysis of gene expression in the central nervous system and identification of a novel interferon-inducible protective gene, mouse ISG12. J Virol 76: 1168811703.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Havert MB, Schofield B, Griffin DE, Irani DN, 2000. Activation of divergent neuronal cell death pathways in different target cell populations during neuroadapted sindbis virus infection of mice. J Virol 74: 53525356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Nava VE, Rosen A, Veliuona MA, Clem RJ, Levine B, Hardwick JM, 1998. Sindbis virus induces apoptosis through a caspase-dependent, CrmA-sensitive pathway. J Virol 72: 452459.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Burdeinick-Kerr R, Griffin DE, 2005. Gamma interferon-dependent, noncytolytic clearance of Sindbis virus infection from neurons in vitro. J Virol 79: 53745385.

  • 55.

    Griffin DE, 2010. Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Immunol Res 47: 123133.

  • 56.

    Ozden S, Huerre M, Riviere JP, Coffey LL, Afonso PV, Mouly V, de Monredon J, Roger JC, El Amrani M, Yvin JL, Jaffar MC, Frenkiel MP, Sourisseau M, Schwartz O, Butler-Browne G, Depres P, Gessain A, Ceccaldi PE, 2007. Human muscle satellite cells as targets of Chikungunya virus infection. PLoS ONE 2: e527.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH, 1988. The molecular basis of Sindbis virus neurovirulence in mice. J Virol 62: 23292336.

Past two years Past Year Past 30 Days
Abstract Views 833 730 17
Full Text Views 498 25 0
PDF Downloads 210 21 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save