Differential Expression of Glycerol-3-Phosphate Dehydrogenase Isoforms in Flight Muscles of the Chagas Disease Vector Triatoma infestans (Hemiptera, Reduviidae)

María M. Stroppa Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by María M. Stroppa in
Current site
Google Scholar
PubMed
Close
,
Mariana S. Lagunas Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by Mariana S. Lagunas in
Current site
Google Scholar
PubMed
Close
,
Carlota S. Carriazo Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by Carlota S. Carriazo in
Current site
Google Scholar
PubMed
Close
,
Beatríz A. Garcia Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by Beatríz A. Garcia in
Current site
Google Scholar
PubMed
Close
,
Gregorio Iraola Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by Gregorio Iraola in
Current site
Google Scholar
PubMed
Close
,
Yanina Panzera Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by Yanina Panzera in
Current site
Google Scholar
PubMed
Close
, and
Nelia M. Gerez de Burgos Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, INICSA (CONICET - Universidad Nacional de Córdoba),Córdoba, Argentina; Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la Republica Oriental del Uruguay, Montevideo, Uruguay

Search for other papers by Nelia M. Gerez de Burgos in
Current site
Google Scholar
PubMed
Close
Restricted access

Flight muscles of Triatoma infestans have two glycerol-3-phosphate dehydrogenase (GPDH) isoforms: GPDH-1 is involved in flight metabolism and GPDH-2 provides lipid precursors. Total GPDH activity was greater in the natural population and almost only due to GPDH-1. Different expression and activity observed between GPDH isoforms in the natural population and the first laboratory generation was not detected in the second laboratory generation. This pattern may be caused by gradual adaptation to laboratory nutritional conditions. During development, the expression of GPDH-2 increased with a longer time of intake, which would imply an increment in lipid biosynthesis. The GPDH-1 transcript predominated with respect to that of GPDH-2 in the lower nutritional condition, suggesting the necessity of insects to fly during this nutritional status. The transcriptional pattern showed a delay at 22°C. The isoforms activities and transcript patterns in flight muscles suggest transcriptional adaptation to metabolic requirements originated by alternative splicing.

Author Notes

* Address correspondence to María M. Stroppa, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Pabellón Argentina, 2 o Piso, Ciudad Universitaria, Córdoba CP 5000, Argentina. E-mail: mercedesstroppa@hotmail.com

Financial support: This study was supported in part by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba, Argentina. María M. Stroppa and Mariana Lagunas are fellows of CONICET. Nelia Gerez de Burgos and Beatriz A. Garcia are Career Investigators of CONICET.

Authors' addresses: María M. Stroppa, Mariana S. Lagunas, Carlota S. Carriazo, Beatríz A. Garcia, and Nelia M. Gerez de Burgos, Cátedra de Bioquímica y Biologìa Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón Argentina, 2° Piso, Ciudad Universitaria, Córdoba CP 5000, Argentina. Gregorio Iraola and Yanina Panzera, Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay.

  • 1.

    World Health Organization, 2002. Control of Chagas' disease: second report of the WHO Expert Committee. World Health Organ Tech Rep Ser 905: 1109.

  • 2.

    World Health Organization, 2004. World Health Report 2004: Changing History. Geneva: World Health Organization. Available at: www.who.int/whr/2004/en/report04_en.pdf. Accessed April 11, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Schmunis GA, 1999. Iniciativa del Cono Sur. Santo Domingo de Los Colorados, Ecuador, INDRE, Mexico City. Proceedings of the Second International Workshop on Population Biology and Control of Triatominae, 2631.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Carcavallo RU, Jurberg J, Galindez Giron I, Lent H, 1997. Atlas of Chagas' Disease Vectors in the Americas. Rio de Janeiro: Editora Fiocruz.

  • 5.

    Schofield CJ, 1992. Dispersative flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6: 5156.

  • 6.

    Lehane MJ, McEwen PK, Whitaker CJ, Schofield CJ, 1992. The role of temperature and nutritional status in flight initiation by Triatoma infestans. Acta Trop 52: 2738.

  • 7.

    Ceballos LA, Vazquez-Prokopec GM, Cecere MC, Gürtler RE, 2005. Feeding rates, nutritional status and flight dispersal potential of peridomestic populations of Triatoma infestans in rural north-western Argentina. Acta Trop 95: 149159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Vazquez-Prokopec GM, Ceballos LA, Marcet PL, Cecere MC, Cardinal MV, Kitron U, Gürtler RE, 2006. Seasonal variations in active dispersal of natural populations of Triatoma infestans in rural north-western Argentina. Med Vet Entomol 20: 273279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ceballos LA, Vazquez-Prokopec GM, Cecere MC, Gürtler RE, 2005. Seasonal variations and density-dependence of nutricional state and feeding rate of Triatoma infestans (Heteroptera:Reduviidae) in peridomestic ecotopes from northwestern Argentina. Acta Trop 95: 149159.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Schofield CJ, Matthews JNS, 1985. Theoretical approach to active dispersal and colonization of houses by Triatoma infestans. J Trop Med Hyg 88: 211222.

  • 11.

    Cecere MC, Gürtler RE, Canale DM, Chuit R, Cohen JE, 2004. Effects of partial housing improvement and insecticide spraying on the reinfestation dynamics of Triatoma infestans in rural northwestern Argentina. Acta Trop 84: 101116.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Vazquez-Prokopec GM, Ceballos LA, Kitron U, Gürtler GE, 2004. Active dispersal of natural populations of Triatoma infestans (Hemiptera: Reduviidae) in rural northwestern Argentina. J Med Entomol 41: 614621.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bewley GC, Cook JL, 1990. Molecular structure, developmental regulation, and evolution of the gene encoding glycerol-3-phosphate dehydrogenase isozymes in Drosophila melanogaster. Isozyme 3: 341374.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Collier GE, Sullivan DT, MacIntyre RJ, 1976. Purification of α-glycerophosphate dehydrogenase from Drosophila melanogaster. Biochim Biophys Acta 429: 316.

  • 15.

    Bewley GC, Rawls JM, Lucchesi JC, 1974. α-glycerolphosphate dehydrogenase in Drosophila melanogaster: kinetic differences and developmental differentiation of the larval and adult isozyme. J Insect Physiol 20: 153165.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Cook JL, Bewley GC, Shaffer JB, 1988. Drosophila α-glycerol-3-phosphate dehydrogenase isozymes are generated by alternate pathways of RNA processing resulting in different carboxyl-terminal amino acid sequence. J Biol Chem 263: 1085810864.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    O'Brien SJ, MacIntyre RJ, 1972. The alpha-glycerophosphate cycle in Drosophila melanogaster. Genet Aspects Genet 71: 127138.

  • 18.

    Rechsteiner MD, 1970. Drosophila lactate dehydrogenase and α-glycerophosphate dehydrogenase: distribution and change in activity during development. J Insect Physiol 16: 11791192.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Wright TR, Shaw CR, 1969. Genetics and ontogeny of α-glycerophosphate dehydrogenase isozymes in Drosophila melanogaster. Biochem Genet 3: 343353.

  • 20.

    Sacktor B, Dick A, 1962. Pathways of hydrogen transport of extra-mitochondrial reduced dephosphopyridine nucleotide in flight muscles. J Biol Chem 237: 32593262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Scaraffia P, Remedi S, Maldonado C, Aoki A, Gerez de Burgos NM, 1997. Comparative enzymatic and ultrastructural changes in thoracic muscles of Triatomine insects during the last stage of metamorphosis. Biochem Physiol 116: 173179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Stroppa MM, Carriazo C, Soria N, Pereira R, Gerez de Burgos NM, 2008. Differential tissue and flight developmental expression of glycerol-3-phosphate dehydrogenase isozymes in the Chagas disease vector Triatoma infestans. Am J Trop Med Hyg 79: 2835.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Espinola NH, 1966. Note on sex differences in immature forms of Triatominae (Hemipter, Reduviidae). Rev Bras 26: 263267.

  • 24.

    Fink SC, Brosemer RW, 1973. Comparative studies on glycerol-3-phosphate dehydrogenase in bees and wasps. Arch Biochem Biophys 158: 1929.

  • 25.

    López AC, Crocco L, Morales G, Catalá S, 1999. Feeding frequency and nutritional status of peridomestic populations of Triatoma infestans from Argentina. Acta Trop 73: 275281.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Martínez-Ibarra JA, Salazar-Sxhettino PM, Solorio-Cibrián M, Cabrera Bravo M, Novelo-López M, Vences OM, Montes-Ochoa JY, Nogueda-Torres B, 2008. Influence of temperature and humidity on the biology of Triatoma mexicana (Hemiptera: Reduviidae: Triatominae) under laboratory conditions. Mem Inst Oswaldo Cruz 103: 719723.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Marden JH, 2008. Quantitative and evolutionary biology of alternative splicing: how changing the mix of alternative transcripts affects phenotypic plasticity and eaction norms. Heredity 100: 111120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Maniatis T, Tasic B, 2002. Alternative pre-mRNA splicing and proteome expansion in metazoans. Nature 418: 236243.

  • 29.

    Lynch KW, 2007. Regulation of alternative splicing by signal transduction pathways. Adv Exp Med Biol 623: 161174.

  • 30.

    Chisa JL, Burke DT, 2006. Mammalian mRNA splice-isoform selection is tightly controlled. Genetics 175: 10791087.

  • 31.

    Marden JH, Fescemyer HW, Saastamoinen M, MacFarland SP, Vera JC, Frilander MJ, Hanski I, 2008. Weight and nutritional affect pre-mRNA splicing of muscle gene associated with performance, energetics and life history. J Exp Biol 211: 36533660.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 411 347 19
Full Text Views 337 4 0
PDF Downloads 80 9 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save