Human Host-Derived Cytokines Associated with Plasmodium vivax Transmission from Acute Malaria Patients to Anopheles darlingi Mosquitoes in the Peruvian Amazon

Shira R. Abeles University of California San Diego, San Diego, California; Universidad Peruana Cayetano Heredia, Lima, Peru

Search for other papers by Shira R. Abeles in
Current site
Google Scholar
PubMed
Close
,
Raul Chuquiyauri University of California San Diego, San Diego, California; Universidad Peruana Cayetano Heredia, Lima, Peru

Search for other papers by Raul Chuquiyauri in
Current site
Google Scholar
PubMed
Close
,
Carlos Tong University of California San Diego, San Diego, California; Universidad Peruana Cayetano Heredia, Lima, Peru

Search for other papers by Carlos Tong in
Current site
Google Scholar
PubMed
Close
, and
Joseph M. Vinetz University of California San Diego, San Diego, California; Universidad Peruana Cayetano Heredia, Lima, Peru

Search for other papers by Joseph M. Vinetz in
Current site
Google Scholar
PubMed
Close
Restricted access

Infection of mosquitoes by humans is not always successful in the setting of patent gametocytemia. This study tested the hypothesis that pro- or anti-inflammatory cytokines are associated with transmission of Plasmodium vivax to Anopheles darlingi mosquitoes in experimental infection. Blood from adults with acute, non-severe P. vivax malaria was fed to laboratory-reared F1 An. darlingi mosquitoes. A panel of cytokines at the time of mosquito infection was assessed in patient sera and levels compared among subjects who did and did not infect mosquitoes. Overall, blood from 43 of 99 (43%) subjects led to mosquito infection as shown by oocyst counts. Levels of IL-10, IL-6, TNF-α, and IFN-γ were significantly elevated in vivax infection and normalized 3 weeks later. The anti-inflammatory cytokine IL-10 was significantly higher in nontransmitters compared with top transmitters but was not in TNF-α and IFN-γ. The IL-10 elevation during acute malaria was associated with P. vivax transmission blocking.

Author Notes

* Address correspondence to Joseph M. Vinetz, Division of Infectious Diseases, Department of Medicine, University of California San Diego, 9500 Gilman Drive 0741, George Palade Laboratories Room 125, La Jolla, CA 92093. E-mail: jvinetz@ucsd.edu

Financial support: This work was supported by NIH/NIAID grant 1U19AI08968, K24AI068903, and R01AI067727, NIH/Fogarty International Center grant D43TW007120, and the National Institutes of Health Office of the Director, Fogarty International Center, Office of AIDS Research, National Cancer Center, National Eye Institute, National Heart, Blood, and Lung Institute, National Institute of Dental & Craniofacial Research, National Institute On Drug Abuse, National Institute of Mental Health, National Institute of Allergy and Infectious Diseases Health, and NIH Office of Women's Health and Research through the International Clinical Research Scholars and Fellows Program at Vanderbilt University (R24 TW007988), and the American Relief and Recovery Act.

Authors' addresses: Shira R. Abeles, University of California San Diego School of Medicine, La Jolla, CA, E-mail: sabeles@ucsd.edu. Raul Chuquiyauri and Joseph M. Vinetz, University of California San Diego School of Medicine, La Jolla, CA, and Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, San Martin de Porres, Lima, Peru, E-mails: rachuqui@ucsd.edu or raulharo@yahoo.com and jvinetz@ucsd.edu. Carlos Tong, Universidad Peruana Cayetano Heredia Satellite Laboratory, Iquitos, Peru, E-mail: carlostongrios@gmail.com.

  • 1.

    Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, Burge R, Coleman RE, 2003. Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg 69: 529535.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bharti AR, Chuquiyauri R, Brouwer KC, Stancil J, Lin J, Llanos-Cuentas A, Vinetz JM, 2006. Experimental infection of the neotropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. Am J Trop Med Hyg 75: 610616.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Toure YT, Doumbo O, Toure A, Bagayoko M, Diallo M, Dolo A, Vernick KD, Keister DB, Muratova O, Kaslow DC, 1998. Gametocyte infectivity by direct mosquito feeds in an area of seasonal malaria transmission: implications for Bancoumana, Mali as a transmission-blocking vaccine site. Am J Trop Med Hyg 59: 481486.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Graves PM, Burkot TR, Carter R, Cattani JA, Lagog M, Parker J, Brabin BJ, Gibson FD, Bradley DJ, Alpers MP, 1988. Measurement of malarial infectivity of human populations to mosquitoes in the Madang area, Papua, New Guinea. Parasitology 96: 251263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gamage-Mendis AC, Rajakaruna J, Carter R, Mendis KN, 1992. Transmission blocking immunity to human Plasmodium vivax malaria in an endemic population in Kataragama, Sri Lanka. Parasite Immunol 14: 385396.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Roeffen W, Geeraedts F, Eling W, Beckers P, Wizel B, Kumar N, Lensen T, Sauerwein R, 1995. Transmission blockade of Plasmodium falciparum malaria by anti-Pfs230-specific antibodies is isotype dependent. Infect Immun 63: 467471.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Drakeley CJ, Bousema JT, Akim NI, Teelen K, Roeffen W, Lensen AH, Bolmer M, Eling W, Sauerwein RW, 2006. Transmission-reducing immunity is inversely related to age in Plasmodium falciparum gametocyte carriers. Parasite Immunol 28: 185190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Hisaeda H, Stowers AW, Tsuboi T, Collins WE, Sattabongkot JS, Suwanabun N, Torii M, Kaslow DC, 2000. Antibodies to malaria vaccine candidates Pvs25 and Pvs28 completely block the ability of Plasmodium vivax to infect mosquitoes. Infect Immun 68: 66186623.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Arevalo-Herrera M, Solarte Y, Rocha L, Alvarez D, Beier JC, Herrera S, 2011. Characterization of Plasmodium vivax transmission-blocking activity in low to moderate malaria transmission settings of the Colombian Pacific coast. Am J Trop Med Hyg 84: 7177.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mendis KN, Naotunne TD, Karunaweera ND, Del Giudice G, Grau GE, Carter R, 1990. Anti-parasite effects of cytokines in malaria. Immunol Lett 25: 217220.

  • 11.

    Walther M, Woodruff J, Edele F, Jeffries D, Tongren JE, King E, Andrews L, Bejon P, Gilbert SC, De Souza JB, Sinden R, Hill AV, Riley EM, 2006. Innate immune responses to human malaria: heterogeneous cytokine responses to blood-stage Plasmodium falciparum correlate with parasitological and clinical outcomes. J Immunol 177: 57365745.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Zeyrek FY, Kurcer MA, Zeyrek D, Simsek Z, 2006. Parasite density and serum cytokine levels in Plasmodium vivax malaria in Turkey. Parasite Immunol 28: 201207.

  • 13.

    Yeom JS, Park SH, Ryu SH, Park HK, Woo SY, Ha EH, Lee BE, Yoo K, Lee JH, Kim KH, Kim S, Kim YA, Ahn SY, Oh S, Park HJ, Min GS, Seoh JY, Park JW, 2003. Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without hepatic dysfunction. Trans R Soc Trop Med Hyg 97: 687691.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Park JW, Park SH, Yeom JS, Huh AJ, Cho YK, Ahn JY, Min GS, Song GY, Kim YA, Ahn SY, Woo SY, Lee BE, Ha EH, Han HS, Yoo K, Seoh JY, 2003. Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without thrombocytopenia. Ann Trop Med Parasitol 97: 339344.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Seoh JY, Khan M, Park SH, Park HK, Shin MH, Ha EH, Lee BE, Yoo K, Han HS, Oh S, Wi JH, Hong CK, Oh CH, Kim YA, Park JW, 2003. Serum cytokine profiles in patients with Plasmodium vivax malaria: a comparison between those who presented with and without hyperpyrexia. Am J Trop Med Hyg 68: 102106.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Jain V, Singh PP, Silawat N, Patel R, Saxena A, Bharti PK, Shukla M, Biswas S, Singh N, 2010. A preliminary study on pro- and anti-inflammatory cytokine profiles in Plasmodium vivax malaria patients from central zone of India. Acta Trop 113: 263268.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Long GH, Chan BH, Allen JE, Read AF, Graham AL, 2008. Blockade of TNF receptor 1 reduces disease severity but increases parasite transmission during Plasmodium chabaudi chabaudi infection. Int J Parasitol 38: 10731081.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Luckhart S, Crampton AL, Zamora R, Lieber MJ, Dos Santos PC, Peterson TM, Emmith N, Lim J, Wink DA, Vodovotz Y, 2003. Mammalian transforming growth factor beta1 activated after ingestion by Anopheles stephensi modulates mosquito immunity. Infect Immun 71: 30003009.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Luckhart S, Lieber MJ, Singh N, Zamora R, Vodovotz Y, 2008. Low levels of mammalian TGF-beta1 are protective against malaria parasite infection, a paradox clarified in the mosquito host. Exp Parasitol 118: 290296.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Long GH, Chan BH, Allen JE, Read AF, Graham AL, 2008. Experimental manipulation of immune-mediated disease and its fitness costs for rodent malaria parasites. BMC Evol Biol 8: 128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Naotunne TS, Karunaweera ND, Mendis KN, Carter R, 1993. Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology 78: 555562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe CV, Doumbo OK, Sztein MB, 2004. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun 72: 56305637.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Mirghani HA, Eltahir HG, A-Elgadir TM, Mirghani YA, Elbashir MI, Adam I, 2010. Cytokine profiles in children with severe Plasmodium falciparum malaria in an area of unstable malaria transmission in Central Sudan. J Trop Pediatr 57: 392395.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Andrade BB, Reis-Filho A, Souza-Neto SM, Clarencio J, Camargo LM, Barral A, Barral-Netto M, 2010. Severe Plasmodium vivax malaria exhibits marked inflammatory imbalance. Malar J 9: 13.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kilian AH, Metzger WG, Mutschelknauss EJ, Kabagambe G, Langi P, Korte R, von Sonnenburg F, 2000. Reliability of malaria microscopy in epidemiological studies: results of quality control. Trop Med Int Health 5: 38.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bowers KM, Bell D, Chiodini PL, Barnwell J, Incardona S, Yen S, Luchavez J, Watt H, 2009. Inter-rater reliability of malaria parasite counts and comparison of methods. Malar J 8: 267.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    O'Meara WP, McKenzie FE, Magill AJ, Forney JR, Permpanich B, Lucas C, Gasser RA Jr, Wongsrichanalai C, 2005. Sources of variability in determining malaria parasite density by microscopy. Am J Trop Med Hyg 73: 593598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Peyron F, Burdin N, Ringwald P, Vuillez JP, Rousset F, Banchereau J, 1994. High levels of circulating IL-10 in human malaria. Clin Exp Immunol 95: 300303.

  • 29.

    Awandare GA, Goka B, Boeuf P, Tetteh JK, Kurtzhals JA, Behr C, Akanmori BD, 2006. Increased levels of inflammatory mediators in children with severe Plasmodium falciparum malaria with respiratory distress. J Infect Dis 194: 14381446.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Karunaweera ND, Carter R, Grau GE, Kwiatkowski D, Del Giudice G, Mendis KN, 1992. Tumour necrosis factor-dependent parasite-killing effects during paroxysms in non-immune Plasmodium vivax malaria patients. Clin Exp Immunol 88: 499505.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Naotunne TS, Karunaweera ND, Del Giudice G, Kularatne MU, Grau GE, Carter R, Mendis KN, 1991. Cytokines kill malaria parasites during infection crisis: extracellular complementary factors are essential. J Exp Med 173: 523529.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Niikura M, Inoue S, Kobayashi F, 2011. Role of interleukin-10 in malaria: focusing on coinfection with lethal and nonlethal murine malaria parasites. J Biomed Biotechnol 2011: 383962.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Gazzinelli RT, Oswald IP, James SL, Sher A, 1992. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J Immunol 148: 17921796.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Silva JS, Morrissey PJ, Grabstein KH, Mohler KM, Anderson D, Reed SG, 1992. Interleukin 10 and interferon gamma regulation of experimental Trypanosoma cruzi infection. J Exp Med 175: 169174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Kobayashi F, Ishida H, Matsui T, Tsuji M, 2000. Effects of in vivo administration of anti-IL-10 or anti-IFN-gamma monoclonal antibody on the host defense mechanism against Plasmodium yoelii yoelii infection. J Vet Med Sci 62: 583587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Angulo I, Fresno M, 2002. Cytokines in the pathogenesis of and protection against malaria. Clin Diagn Lab Immunol 9: 11451152.

  • 37.

    Kossodo S, Monso C, Juillard P, Velu T, Goldman M, Grau GE, 1997. Interleukin-10 modulates susceptibility in experimental cerebral malaria. Immunology 91: 536540.

  • 38.

    Li C, Corraliza I, Langhorne J, 1999. A defect in interleukin-10 leads to enhanced malarial disease in Plasmodium chabaudi chabaudi infection in mice. Infect Immun 67: 44354442.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Linke A, Kuhn R, Muller W, Honarvar N, Li C, Langhorne J, 1996. Plasmodium chabaudi chabaudi: differential susceptibility of gene-targeted mice deficient in IL-10 to an erythrocytic-stage infection. Exp Parasitol 84: 253263.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Thuma PE, van Dijk J, Bucala R, Debebe Z, Nekhai S, Kuddo T, Nouraie M, Weiss G, Gordeuk VR, 2011. Distinct clinical and immunologic profiles in severe malarial anemia and cerebral malaria in Zambia. J Infect Dis 203: 211219.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Othoro C, Lal AA, Nahlen B, Koech D, Orago AS, Udhayakumar V, 1999. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis 179: 279282.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Couper KN, Blount DG, Wilson MS, Hafalla JC, Belkaid Y, Kamanaka M, Flavell RA, de Souza JB, Riley EM, 2008. IL-10 from CD4CD25Foxp3CD127 adaptive regulatory T cells modulates parasite clearance and pathology during malaria infection. PLoS Pathog 4: e1000004.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Weidanz WP, Batchelder JM, Flaherty P, LaFleur G, Wong C, van der Heyde HC, 2005. Plasmodium chabaudi adami: use of the B-cell-deficient mouse to define possible mechanisms modulating parasitemia of chronic malaria. Exp Parasitol 111: 97104.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Pukrittayakamee S, Imwong M, Singhasivanon P, Stepniewska K, Day NJ, White NJ, 2008. Effects of different antimalarial drugs on gametocyte carriage in P. vivax malaria. Am J Trop Med Hyg 79: 378384.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Alano P, Carter R, 1990. Sexual differentiation in malaria parasites. Annu Rev Microbiol 44: 429449.

  • 46.

    Tchuinkam T, Mulder B, Dechering K, Stoffels H, Verhave JP, Cot M, Carnevale P, Meuwissen JH, Robert V, 1993. Experimental infections of Anopheles gambiae with Plasmodium falciparum of naturally infected gametocyte carriers in Cameroon: factors influencing the infectivity to mosquitoes. Trop Med Parasitol 44: 271276.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SA, Sauerwein RW, 2007. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg 76: 470474.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Collins WE, Jeffery GM, Roberts JM, 2004. A retrospective examination of the effect of fever and microgametocyte count on mosquito infection on humans infected with Plasmodium vivax. Am J Trop Med Hyg 70: 638641.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Sowunmi A, Fateye BA, Adedeji AA, Fehintola FA, Happi TC, 2004. Risk factors for gametocyte carriage in uncomplicated falciparum malaria in children. Parasitology 129: 255262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Karunaweera ND, Grau GE, Gamage P, Carter R, Mendis KN, 1992. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci USA 89: 32003203.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Wilson NO, Bythwood T, Solomon W, Jolly P, Yatich N, Jiang Y, Shuaib F, Adjei AA, Anderson W, Stiles JK, 2010. Elevated levels of IL-10 and G-CSF associated with asymptomatic malaria in pregnant women. Infect Dis Obstet Gynecol. doi:10.1155/2010/317430.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP, 2002. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66: 641648.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Bottius E, Guanzirolli A, Trape JF, Rogier C, Konate L, Druilhe P, 1996. Malaria: even more chronic in nature than previously thought; evidence for subpatent parasitaemia detectable by the polymerase chain reaction. Trans R Soc Trop Med Hyg 90: 1519.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Cirimotich CM, Dong Y, Clayton AM, Sandiford SL, Souza-Neto JA, Mulenga M, Dimopoulos G, 2011. Natural microbe-mediated refractoriness to Plasmodium infection in Anopheles gambiae. Science 332: 855858.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Hisaeda H, Collins WE, Saul A, Stowers AW, 2001. Antibodies to Plasmodium vivax transmission-blocking vaccine candidate antigens Pvs25 and Pvs28 do not show synergism. Vaccine 20: 763770.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Doi M, Tanabe K, Tachibana S, Hamai M, Tachibana M, Mita T, Yagi M, Zeyrek FY, Ferreira MU, Ohmae H, Kaneko A, Randrianarivelojosia M, Sattabongkot J, Cao YM, Horii T, Torii M, Tsuboi T, 2011. Worldwide sequence conservation of transmission-blocking vaccine candidate Pvs230 in Plasmodium vivax. Vaccine 29: 43084315.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K, Long CA, Lambert L, Miles AP, Wang J, Stowers A, Miller LH, Saul A, 2005. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine 23: 31313138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Sattabongkot J, Tsuboi T, Hisaeda H, Tachibana M, Suwanabun N, Rungruang T, Cao YM, Stowers AW, Sirichaisinthop J, Coleman RE, Torii M, 2003. Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despite antigenic polymorphism in field isolates. Am J Trop Med Hyg 69: 536541.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Daily JP, Scanfeld D, Pochet N, Le Roch K, Plouffe D, Kamal M, Sarr O, Mboup S, Ndir O, Wypij D, Levasseur K, Thomas E, Tamayo P, Dong C, Zhou Y, Lander ES, Ndiaye D, Wirth D, Winzeler EA, Mesirov JP, Regev A, 2007. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450: 10911095.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 832 749 54
Full Text Views 386 9 2
PDF Downloads 120 10 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save