• 1.

    Pfaehler O, Oulo DO, Gouagna LC, Githure J, Guerin PM, 2006. Influence of soil quality in the larval habitat on development of Anopheles gambiae Giles. J Vector Ecol 31: 400405.

    • Search Google Scholar
    • Export Citation
  • 2.

    Lutomiah JL, Koka H, Mutisya J, Yalwala S, Muthoni M, Makio A, Limbaso S, Musila L, Clark JW, Turell MJ, Kioko E, Schnabel D, Sang RC, 2011. Ability of selected Kenyan mosquito (Diptera: Culicidae) species to transmit West Nile virus under laboratory conditions. J Med Entomol 48: 11971201.

    • Search Google Scholar
    • Export Citation
  • 3.

    Wang Z, Zhang X, Li C, Zhang Y, Xing D, Wu Y, Zhao T, 2012. Vector competence of five common mosquito species in the People's Republic of China for western equine encephalitis virus. Vector Borne Zoonotic Dis 12: 605608.

    • Search Google Scholar
    • Export Citation
  • 4.

    Wong J, Stoddard ST, Astete H, Morrison AC, Scott TW, 2011. Oviposition site selection by the dengue vector Aedes aegypti and its implications for dengue control. PLoS Negl Trop Dis 5: e1015.

    • Search Google Scholar
    • Export Citation
  • 5.

    Wanji S, Mafo FF, Tendongfor N, Tanga MC, Tchuente F, Bilong Bilong CF, Njine T, 2009. Spatial distribution, environmental and physicochemical characterization of Anopheles breeding sites in the Mount Cameroon region. J Vector Borne Dis 46: 7580.

    • Search Google Scholar
    • Export Citation
  • 6.

    Stein M, Luduena-Almeida F, Willener JA, Almiron WR, 2011. Classification of immature mosquito species according to characteristics of the larval habitat in the subtropical province of Chaco, Argentina. Mem Inst Oswaldo Cruz 106: 400407.

    • Search Google Scholar
    • Export Citation
  • 7.

    de Little SC, Bowman DM, Whelan PI, Brook BW, Bradshaw CJ, 2009. Quantifying the drivers of larval density patterns in two tropical mosquito species to maximize control efficiency. Environ Entomol 38: 10131021.

    • Search Google Scholar
    • Export Citation
  • 8.

    Grillet ME, Barrera R, Martínez JE, Berti J, Fortin MJ, 2010. Disentangling the effect of local and global spatial variation on a mosquito-borne infection in a neotropical heterogeneous environment. Am J Trop Med Hyg 82: 194201.

    • Search Google Scholar
    • Export Citation
  • 9.

    Loiola CC, da Silva CJ, Tauil PL, 2002. Malaria control in Brazil: 1965 to 2001. Rev Panam Salud Publica 11: 235244.

  • 10.

    da Silva NS, da Silva-Nunes M, Malafronte RS, Menezes MJ, D'Arcadia RR, Komatsu NT, Scopel KK, Braga EM, Cavasini CE, Cordeiro JA, Ferreira MU, 2010. Epidemiology and control of frontier malaria in Brazil: lessons from community-based studies in rural Amazonia. Trans R Soc Trop Med Hyg 104: 343350.

    • Search Google Scholar
    • Export Citation
  • 11.

    Tauil P, Daniel-Ribeiro C, 1998. Some aspects of epidemiology and control of malaria in Brazil. Res Rev Parasitol 58: 163167.

  • 12.

    Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT, 2010. Malaria in Brazil: an overview. Malar J 9: 115.

  • 13.

    Papavero N, Guimarães JH, 2000. The taxonomy of Brazilian insects vectors of transmissible diseases (1900–2000): then and now. Mem Inst Oswaldo Cruz 95: 109118.

    • Search Google Scholar
    • Export Citation
  • 14.

    Marrelli MT, Sallum MAM, Marinotti O, 2006. The second internal transcribed spacer of nuclear ribosomal DNA as a tool for Latin American anopheline taxonomy—A critical review. Mem Inst Oswaldo Cruz 101: 817832.

    • Search Google Scholar
    • Export Citation
  • 15.

    Rubio-Palis Y, 1994. Variation of the vectorial capacity of some anophelines in western Venezuela. Am J Trop Med Hyg 50: 420424.

  • 16.

    Galardo AKR, Arruda M, D'Almeida Couto AA, Lounibos LP, Zimmerman RH, 2007. Malaria vector incrimination in three rural riverine villages in the Brazilian Amazon. Am J Trop Med Hyg 76: 461469.

    • Search Google Scholar
    • Export Citation
  • 17.

    Póvoa MM, Wirtz RA, Lacerda RNL, Miles MA, Warhurst D, 2001. Malaria vectors in the municipality of Serra do Navio, state of Amapá, Amazon Region, Brazil. Mem Inst Oswaldo Cruz 96: 179184.

    • Search Google Scholar
    • Export Citation
  • 18.

    Conn JE, Wilkerson RC, Segura MN, de-Souza-Raimundo TL, Schlichting CD, Wirtz RA, Povoa MM, 2002. Emergence of a new Neotropical malaria vector facilitated by human migration and changes in land use. Am J Trop Med Hyg 66: 1822.

    • Search Google Scholar
    • Export Citation
  • 19.

    Povoa MM, de Souza RT, Lacerda RN, Rosa ES, Galiza D, de Souza JR, Wirtz RA, Schlichting CD, Conn JE, 2006. The importance of Anopheles albitarsis E and An. darlingi in human malaria transmission in Boa Vista, state of Roraima, Brazil. Mem Inst Oswaldo Cruz 101: 163168.

    • Search Google Scholar
    • Export Citation
  • 20.

    Faran ME, Linthicum KJ, 1981. A handbook of the Amazonian species of Anopheles (Nyssorhynchus) (Diptera: Culicidae). Mosq Syst 13: 181.

  • 21.

    Silva-do-Nascimento TF, Lourenço-de-Oliveira R, 2002. Anopheles halophylus, a new species of the subgenus Nyssorhynchus (Diptera: Culicidae) from Brazil. Mem Inst Oswaldo Cruz 97: 801811.

    • Search Google Scholar
    • Export Citation
  • 22.

    Silva-do-Nascimento TF, Wilkerson RC, Lourenço-de-Oliveira R, Monteiro FA, 2006. Molecular confirmation of the specific status of Anopheles halophylus (Diptera: Culicidae) and evidence of a new cryptic species within An. triannulatus in central Brazil. J Med Entomol 43: 455459.

    • Search Google Scholar
    • Export Citation
  • 23.

    Silva-do-Nascimento TF, Pitaluga LD, Peixoto AA, Lourenço-de-Oliveira R, 2011. Molecular divergence in the timeless and cpr genes among three sympatric cryptic species of the Anopheles triannulatus complex. Mem Inst Oswaldo Cruz 106: 218222.

    • Search Google Scholar
    • Export Citation
  • 24.

    Gutiérrez LA, González JJ, Gómez GF, Castro MI, Rosero DA, Luckhart S, Conn JE, Correa MM, 2009. Species composition and natural infectivity of anthropophilic Anopheles (Diptera: Culicidae) in the states of Córdoba and Antioquia, northwestern Colombia. Mem Inst Oswaldo Cruz 104: 11171124.

    • Search Google Scholar
    • Export Citation
  • 25.

    Brochero H, Pareja PX, Ortiz G, Olano VA, 2006. Breeding places and biting activity of Anopheles species in the municipality of Cimitarra, Santander, Colombia. Biomedica 26: 269277.

    • Search Google Scholar
    • Export Citation
  • 26.

    de Barros FSM, de Aguiar DB, Rosa-Freitas MG, Luitgards-Moura JF, da Costa Gurgel H, Honorio NA, de Arruda ME, Tsouris P, Vasconcelos SD, 2007. Distribution summaries of malaria vectors in the northern Brazilian Amazon. J Vector Ecol 32: 161167.

    • Search Google Scholar
    • Export Citation
  • 27.

    Faran ME, 1980. Mosquito studies (Diptera, Culicidae). XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles. Contrib Am Entomol Inst 15: 1215.

    • Search Google Scholar
    • Export Citation
  • 28.

    Sallum MA, Marrelli MT, Nagaki SS, Laporta GZ, Dos Santos CL, 2008. Insight into Anopheles (Nyssorhynchus) (Diptera: Culicidae) species from Brazil. J Med Entomol 45: 970981.

    • Search Google Scholar
    • Export Citation
  • 29.

    Calado DC, Foster PG, Bergo ES, Dos Santos CL, Galardo AK, Sallum MA, 2008. Resurrection of Anopheles goeldii from synonymy with Anopheles nuneztovari (Diptera, Culicidae) and a new record for Anopheles dunhami in the Brazilian Amazon. Mem Inst Oswaldo Cruz 103: 791799.

    • Search Google Scholar
    • Export Citation
  • 30.

    Scarpassa VM, Conn JE, 2011. MtDNA tracks a complex evolutionary history with pleistocene divergence for the neotropical malaria vector Anopheles nuneztovari sensu lato. Am J Trop Med Hyg 85: 857867.

    • Search Google Scholar
    • Export Citation
  • 31.

    Russel PF, Rozeboom LE, Stone A, 1943. Keys to the anopheline mosquitoes of the world with notes on their identification, distribution, biology, and relation to malaria. J Acad Nat Sci Phila 8: 121131.

    • Search Google Scholar
    • Export Citation
  • 32.

    Bourke BP, Foster PG, Bergo ES, Calado DC, Sallum MA, 2010. Phylogenetic relationships among species of Anopheles (Nyssorhynchus) (Diptera, Culicidae) based on nuclear and mitochondrial gene sequences. Acta Trop 114: 8896.

    • Search Google Scholar
    • Export Citation
  • 33.

    Tadei WP, Dutary-Thatcher B, 2000. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop Sao Paulo 42: 8794.

    • Search Google Scholar
    • Export Citation
  • 34.

    da Silva-Vasconcelos A, Neves Kató MY, Neves Mourão E, Lessa de Souza RT, da Luz Lacerda RN, Sibajev A, Tsouris P, Póvoa MM, Momen H, Rosa-Freitas MG, 2002. Biting indices, host-seeking activity and natural infection rates of anopheline species in Boa Vista, Roraima, Brazil from 1996 to 1998. Mem Inst Oswaldo Cruz 97: 151161.

    • Search Google Scholar
    • Export Citation
  • 35.

    Nagm L, Luitgards-Moura JF, de Souza C, Monteiro-de-Barros FS, Honório NA, Tsouris P, Rosa-Freitas MG, 2007. Affinity and diversity indices for anopheline immature forms. Rev Inst Med Trop Sao Paulo 49: 309316.

    • Search Google Scholar
    • Export Citation
  • 36.

    Motoki MT, Wilkerson RC, Sallum MA, 2009. The Anopheles albitarsis complex with the recognition of Anopheles oryzalimnetes Wilkerson and Motoki, n. sp. and Anopheles janconnae Wilkerson and Sallum, n. sp. (Diptera: Culicidae). Mem Inst Oswaldo Cruz 104: 823850.

    • Search Google Scholar
    • Export Citation
  • 37.

    Ruiz-Lopez F, Wilkerson RC, Conn JE, McKeon SN, Levin DM, Quinones ML, Povoa MM, Linton YM, 2012. DNA barcoding reveals both known and novel taxa in the Albitarsis group (Anopheles: Nyssorhynchus) of neotropical malaria vectors. Parasit Vectors 5: 44.

    • Search Google Scholar
    • Export Citation
  • 38.

    Campos RE, Maciá A, García JJ, 1995. Seasonal variation of three Psorophora species (Diptera: Culicidae) and detection of their parasites and pathogens in Punta Lara, Buenos Aires, Argentina. Acta Ent Chilena 19: 113121.

    • Search Google Scholar
    • Export Citation
  • 39.

    Rubio-Palis Y, Menare C, Quinto A, Magris M, Amarista M, 2005. Characterization of breeding sites of Anopheline (Diptera: Culicidae) vectors of malaria of the upper Orinoco, Amazonas, Venezuela. Entomotropica 20: 2938.

    • Search Google Scholar
    • Export Citation
  • 40.

    Tadei WP, Dutary Thatcher B, Santos JMM, Scarpassa VM, Rodrigues IB, Rafael MS, 1998. Ecological observations on anopheline vectors of malaria in the Brazilian Amazon. Am J Trop Med Hyg 59: 325335.

    • Search Google Scholar
    • Export Citation
  • 41.

    Barros FS, Honorio NA, Arruda ME, 2010. Mosquito anthropophily: implications on malaria transmission in the northern Brazilian Amazon. Neotrop Entomol 39: 10391043.

    • Search Google Scholar
    • Export Citation
  • 42.

    Barros FS, Arruda ME, Gurgel HC, Honório NA, 2011. Spatial clustering and longitudinal variation of Anopheles darlingi (Diptera: Culicidae) larvae in a river of the Amazon: the importance of the forest fringe and of obstructions to flow in frontier malaria. Bull Entomol Res 101: 643658.

    • Search Google Scholar
    • Export Citation
  • 43.

    Greico JP, Johnson S, Achee NL, Masuoka P, Pope K, Rejmankova E, Vanzie E, Andre R, Roberts D, 2006. Distribution of Anopheles albimanus, Anopheles vestitipennis, and Anopheles crucians associated with land use in northern Belize. J Med Ent 43: 614622.

    • Search Google Scholar
    • Export Citation
  • 44.

    Krauss J, Steffan-Dewenter I, Tscharntke T, 2003. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? J Biogeogr 30: 889900.

    • Search Google Scholar
    • Export Citation
  • 45.

    Brouat C, Chevallier H, Meusnier S, Noblecourt T, Rasplus JY, 2004. Specialization and habitat: spatial and environmental effects on abundance and genetic diversity of forest generalist and specialist Carabus species. Mol Ecol 13: 18151826.

    • Search Google Scholar
    • Export Citation
  • 46.

    Gomez-Rodriquez C, Diaz-Paniagua C, Serrano L, Florencio M, Portheault A, 2009. Mediterranean temporary ponds as amphibian breeding habitats: the importance of preserving pond networks. Aquat Ecol 43: 11791191.

    • Search Google Scholar
    • Export Citation
  • 47.

    Deane LM, Causey OR, Deane MP, 1946. An illustrated key by adult female characteristics for identification of thirty-five species of Anophelini from the northeast and Amazon regions of Brazil, with notes on the malaria vectors (Diptera: Culicidae). Am J Hyg Monog Ser 18: 118.

    • Search Google Scholar
    • Export Citation
  • 48.

    Zapata MA, Cienfuegos AV, Quiros OI, Quinones ML, Luckhard S, Correa MM, 2007. Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of ITS sequences. Am J Trop Med Hyg 77: 6772.

    • Search Google Scholar
    • Export Citation
  • 49.

    Li C, Wilkerson RC, 2005. Identification of Anopheles (Nyssorhynchus) albitarsis complex species (Diptera: Culicidae) using rDNA internal transcribed spacer 2-based polymerase chain reaction primers. Mem Inst Oswaldo Cruz 100: 495500.

    • Search Google Scholar
    • Export Citation
  • 50.

    Rejmankova E, Savage HM, Rejmanek M, Arredondo-Jimenez JJ, Roberts DR, 1991. Multivariate analysis of relationships between habitats, environmental factors and occurrence of anopheline mosquito larvae Anopheles albimanus and A. pseudopunctipennis in southern Chiapas, Mexico. J Appl Ecol 28: 827841.

    • Search Google Scholar
    • Export Citation
  • 51.

    Minakawa N, Munga S, Atieli F, Mushinzimana E, Zhou G, Githeko AK, Yan G, 2005. Spatial distribution of anopheline larval habitats in western Kenyan highlands: effects of land cover types and topography. Am J Trop Med Hyg 73: 157165.

    • Search Google Scholar
    • Export Citation
  • 52.

    Manguin S, Roberts DR, Peyton EL, Rejmanjova E, Pecor J, 1996. Characterization of Anopheles pseudopunctipennis larval habitats. J Am Mosq Control Assoc 12: 619626.

    • Search Google Scholar
    • Export Citation
  • 53.

    Stein M, Ludueña-Almeida F, Willener JA, Almirón WR, 2011. Classification of immature mosquito species according to characteristics of the larval habitat in the subtropical province of Chaco, Argentina. Mem Inst Oswaldo Cruz 106: 400407.

    • Search Google Scholar
    • Export Citation
  • 54.

    Smith RA, Levin TR, Lachlan KA, Fediuk TA, 2006. The high cost of complexity in experimental design and data analysis: type I and type II error rates in multiway ANOVA. Hum Commun Res 28: 515530.

    • Search Google Scholar
    • Export Citation
  • 55.

    Nictora AB, Chazdon RL, Schlichting CD, 1997. Patterns of genotypic and phenotypic plasticity of light response in two tropical Piper (Piperaceae) species. Am J Bot 84: 15421552.

    • Search Google Scholar
    • Export Citation
  • 56.

    Laporta GZ, Ramos DG, Ribeiro MC, Sallum MAM, 2011. Habitat suitability of Anopheles vector species and association with human malaria in the Atlantic Forest in south-eastern Brazil. Mem Inst Oswaldo Cruz 106: 239245.

    • Search Google Scholar
    • Export Citation
  • 57.

    Ayala D, Constantini C, Ose K, Kamdem GC, Antonio-Nkondjio C, Agbor JP, Awono-Ambene P, Fontenille D, Simard F, 2009. Habitat suitability and ecological niche profile of major malaria vectors in Cameroon. Malar J 8: 307.

    • Search Google Scholar
    • Export Citation
  • 58.

    Hecht MK, MacIntyre RJ, Clegg MT, 1998. Evolutionary Biology. Volume 30. New York: Plenum Press, New York Publishing, 268271.

  • 59.

    Jolliffe IT, 2002. Principal Component Analysis. Second edition. New York: Springer-Verlag, Inc., 284286.

  • 60.

    Cadima J, Jolliffe IT, 1995. Loading and correlations in the interpretation of principle components. J Appl Stat 22: 203214.

  • 61.

    Johnson NL, Kotz S, Balakrishnan AV, 1997. Discrete Multivariate Distributions. New York: John Wiley & Sons Inc., 30120.

  • 62.

    Vanwambeke SO, Somboon P, Harbach RE, Isenstadt M, Lambin EF, Walton C, Butlin RK, 2007. Landscape and land cover factors influence the presence of Aedes and Anopheles larvae. J Med Entomol 44: 133144.

    • Search Google Scholar
    • Export Citation
  • 63.

    Eisenberg JS, Washburn JO, Schreiber SJ, 2000. Generalist feeding behaviors of Aedes sierrensis larvae and their effects on protozoan populations. Ecology 81: 921935.

    • Search Google Scholar
    • Export Citation
  • 64.

    Chase JM, Knight TM, 2003. Drought-induced mosquito outbreaks in wetlands. Ecol Lett 6: 10171024.

  • 65.

    Grimaldi D, Engel MS, 2005. Evolution of the Insects. New York, NY: Cambridge University Press, 491547.

  • 66.

    Bolnick DI, Svanback R, Araujo MS, Persson L, 2007. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc Natl Acad Sci USA 104: 1007510079.

    • Search Google Scholar
    • Export Citation
  • 67.

    Gram WK, Sork VL, 2001. Association between environmental and genetic heterogeneity in forest tree populations. Ecol 82: 20122021.

  • 68.

    Marten GG, Suarez MF, Astaeza R, 1996. An ecological survey of Anopheles albimanus larval habitats in Colombia. J Vector Ecol 21: 122131.

  • 69.

    Grillet ME, 2000. Factors associated with distribution of Anopheles aquasalis and Anopheles oswaldoi (Diptera: Culicidae) in a malarious area, northeastern Venezuela. J Med Entomol 37: 231238.

    • Search Google Scholar
    • Export Citation
  • 70.

    Bradley TJ, 1994. The role of physiological capacity, morphology and phylogeny in determining habitat use in mosquitoes. Wainwright PC, Reilly SM, eds. Ecological Morphology: Integrative Organismal Biology. Chicago, IL: University of Chicago Press, 303318.

    • Search Google Scholar
    • Export Citation
  • 71.

    Patrick ML, Bradley TJ, 2000. The physiology of salinity tolerance in larvae of two species of Culex mosquitoes: the role of compatible solutes. J Exp Biol 203: 821830.

    • Search Google Scholar
    • Export Citation
  • 72.

    Barrow CJ, 2006. Environmental Management for Sustainable Development. London, UK: Routledge, 312333.

  • 73.

    Conn JE, Mirabello L, 2007. The biogeography and population genetics of neotropical vector species. Heredity 99: 245256.

  • 74.

    Rubio-Palis Y, Curtis CE, 1992. The biting and resting behavior of resting mosquitoes in western Venezuela and implications for control of malaria transmission. Med Vet Entomol 6: 325334.

    • Search Google Scholar
    • Export Citation
  • 75.

    Faria R, Navarro A, 2010. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol Evol 25: 660669.

  • 76.

    Gaston KJ, Chown SL, Evans KL, 2008. Ecogeographical rules: elements of a synthesis. J Biogeogr 35: 483500.

  • 77.

    van Heerwaarden B, Kellermann V, Schiffer M, Blacket M, Sgrò CM, Hoffmann AA, 2009. Testing evolutionary hypotheses about species borders: patterns of genetic variation towards the southern borders of two rainforest Drosophila and a related habitat generalist. Proc Biol Sci 276: 15171526.

    • Search Google Scholar
    • Export Citation
  • 78.

    Strauss B, Biedermann R, 2007. The use of habitat models in conservation of rate and endangered leafhopper species (Hemiptera, Auchenorrhyncha). J Insect Conserv 9: 245259.

    • Search Google Scholar
    • Export Citation
  • 79.

    Rattanarithikul R, Green CA, Panyim S, Noigamol C, Chanaimongkol S, Mahapibul P, 1995. Larval habitats of malaria vectors and other Anopheles mosquitoes around a transmission focus in northwestern Thailand. J Am Mosq Control Assoc 11: 428433.

    • Search Google Scholar
    • Export Citation
  • 80.

    Rejmankova E, Harbin-Ireland A, Lege M, 2000. Bacterial abundance in larval habitats of four species of Anopheles (Diptera: Culicidae) in Belize, Central America. J Vector Ecol 25: 229238.

    • Search Google Scholar
    • Export Citation
  • 81.

    Kengluecha A, Rongnoparut P, Boonsuepsakul S, Sithiprasasna R, Rodpradit P, Baimai V, 2005. Geographical distribution of Anopheles minimus species A and C in western Thailand. J Vector Ecol 30: 225238.

    • Search Google Scholar
    • Export Citation
  • 82.

    Mwangangi JM, Muturi EJ, Mbogo CM, 2009. Seasonal mosquitoes larval abundance and composition in Kibwezi, Lower Eastern Kenya. J Vector Borne Dis 46: 6579.

    • Search Google Scholar
    • Export Citation
  • 83.

    Kling LJ, Juliano SA, Yee DA, 2007. Larval mosquito communities in discarded automobile tires in a forested and non-forested site: detritus type, amount, and water nutrient differences. J Vector Ecol 32: 207217.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 267 125 3
PDF Downloads 100 46 2
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Ecological Suitability and Spatial Distribution of Five Anopheles Species in Amazonian Brazil

View More View Less
  • Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, Albany, New York; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut; Laboratório de Pesquisas Básicas em Malaria, Instituto Evandro Chagas, Para, Brazil; Wadsworth Center, New York State Department of Health, Slingerlands, New York
Restricted access

Seventy-six sites characterized in Amazonian Brazil revealed distinct habitat diversification by examining the environmental factors associated with the distribution and abundance of five anopheline species (Diptera: Culicidae) in the subgenus Nyssorhynchus. These included three members of the Albitarsis Complex, Anopheles oryzalimnetes, Anopheles marajoara, Anopheles janconnae; Anopheles triannulatus, and Anopheles goeldii. Anopheles janconnae abundance had a positive correlation to water flow and a negative relationship to sun exposure. Abundance of An. oryzalimentes was associated with water chemistry. Anopheles goeldii larvae were abundant in shaded, more saline waters. Anopheles marajoara and An. triannulatus were negatively associated with available resources, although An. marajoara also showed several local correlations. These analyses suggest An. triannulatus is a habitat generalist, An. oryzalimentes and An. janconnae are specialists, and An. marajoara and An. goeldii could not be easily classified either way. Correlations described herein provide testable hypotheses for future research and identifying habitats for vector control.

Author Notes

* Address correspondence to Sascha N. McKeon, University at Albany School of Public Health, 1400 Washington Avenue, Albany, NY 12222. E-mail: sascha.mckeon@gmail.com

Financial support: Funding for this study was provided by Instituto Evandro Chagas, Ananindeua, Pará, Brazil and NIH grants 1T32AI05532901A1, “Training in Biodefense and Emerging Infectious Disease” and NIH R01 A154139 to JEC.

Authors' addresses: Sascha N. McKeon, Blue Mountain Community College, Pendleton, OR, E-mail: sascha.mckeon@bluecc.edu. Carl D. Schlichting, University of Connecticut, Storrs, CT, E-mail: schlicht@uconn.edu. Marinete M. Povoa, Instituto Evandro Chagas, Ananindeua, PA, Brazil, E-mail: marinetepovoa@iec.pa.gov.br. Jan E. Conn, University at Albany School of Public Health, Albany, NY, and Wadsworth Center New York State Department of Health, Slingerlands, NY, E-mail: jconn@wadsworth.org.

Save