• 1.

    Roderick GK, 1996. Geographic structure of insect populations: gene flow, phylogeography, and their uses. Annu Rev Entomol 41: 325352.

  • 2.

    Monteiro FA, Pérez R, Panzera F, Dujardin JP, Galvão C, Rocha D, Noireau F, Schofield C, Beard CB, 1999. Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma. Mem Inst Oswaldo Cruz 94: 229238.

    • Search Google Scholar
    • Export Citation
  • 3.

    García BA, Manfredi C, Fichera L, Segura EL, 2003. Variation in mitochondrial 12S and 16S ribosomal DNA sequences in natural populations of Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 68: 692694.

    • Search Google Scholar
    • Export Citation
  • 4.

    Segura EL, Torres AG, Fusco O, García BA, 2009. Mitochondrial 16S DNA variation in populations of Triatoma infestans from Argentina. Med Vet Entomol 23: 3440.

    • Search Google Scholar
    • Export Citation
  • 5.

    Piccinali RV, Marcet PL, Noireau F, Kitron U, Gurtler RE, Dotson EM, 2009. Molecular population genetics and phylogeography of the Chagas disease vector Triatoma infestans in South America. J Med Entomol 46: 796809.

    • Search Google Scholar
    • Export Citation
  • 6.

    Michel AP, Grushko O, Guelbeogo WM, Lobo NF, Fale Sagnon N, Costantini C, Besansky NJ, 2006. Divergence with gene flow in Anopheles fenustus from the Sudan Savanna of Burkina Faso, West Africa. Genetics 173: 13891395.

    • Search Google Scholar
    • Export Citation
  • 7.

    Meraner A, Brandstätter A, Thaler R, Aray B, Unterlechner M, Niederstätter H, Parson W, Zelger R, Dalla Via J, Dallinger R, 2008. Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Mol Phylogenet Evol 48: 825837.

    • Search Google Scholar
    • Export Citation
  • 8.

    Grisales N, Triana O, Angulo V, Jaramillo N, Parra-Henao G, Panzera F, Gómez-Palacio A, 2010. Diferenciación genética de tres poblaciones Colombianas de Triatoma dimidiata (Latreille, 1811) mediante análisis molecular del gen mitocondrial ND4. Biomedica 30: 207214.

    • Search Google Scholar
    • Export Citation
  • 9.

    Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 15961599.

    • Search Google Scholar
    • Export Citation
  • 10.

    Watterson GA, 1975. On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7: 256276.

  • 11.

    Nei M, 1987. Molecular Evolutionary Genetics. New York: Columbia University Press.

  • 12.

    Tajima F, 1983. Evolutionary relationship of DNA sequences in finite populations. Genetics 105: 437460.

  • 13.

    Librado P, Rozas J, 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 14511452.

  • 14.

    Clement M, Posada D, Crandrall KA, 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 16571659.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Variation in Mitochondrial NADH Dehydrogenase Subunit 5 and NADH Dehydrogenase Subunit 4 Genes in the Chagas Disease Vector Triatoma infestans (Hemiptera: Reduviidae)

View More View Less
  • Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, INICSA (CONICET-Universidad Nacional de Córdoba), Ciudad Universitaria, Córdoba, Argentina

Variation in mitochondrial NADH dehydrogenase subunit 5 (ND5) and NADH dehydrogenase subunit 4 (ND4) genes was surveyed in Triatoma infestans from 24 localities of Argentina. The DNA sequence comparisons of 2,183 basepairs of the mitochondrial genome, which include the complete sequence of ND5 (1,712 basepairs) and 401 basepairs of ND4 genes, showed 19 haplotypes determined by 48 variable sites and a nucleotide diversity value of 0.292%. Twenty-six (65%) substitutions were synonymous, and there were 14 (35%) predicted amino acid replacements in ND5. In ND4, 5 (62.5%) substitutions were synonymous and 3 (37.5%) were replacement sites. Samples from six localities studied shared one haplotype and the rest of the localities had different haplotypes. The amplified regions should be useful for population genetic studies.

Author Notes

* Address correspondence to Beatriz A. García, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón Argentina 2° Piso, Ciudad Universitaria, 5000 Córdoba, Argentina. E-mail: bgarcia@biomed.uncor.edu

Financial support: This study was supported by the grants from the Agencia Nacional de Promoción Científica y Tecnológica (FONCyT), the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) of Argentina, and the Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba. Cintia J. Fernández is a Fellow of FONCyT and Beatriz A. García is Career Investigator of CONICET.

Authors' addresses: Cintia J. Fernández, Alicia R. Pérez de Rosas, and Beatriz A. García, Cátedra de Bioquímica y Biología Molecular, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Pabellón Argentina 2° Piso, Ciudad Universitaria, 5000 Córdoba, Argentina, E-mails: cjudithfernandez@gmail.com, arperez@biomed.fcm.edu.com.ar, and bgarcia@biomed.uncor.edu.

Save