Bacillus thuringiensis var. israelensis Misting for Control of Aedes in Cryptic Ground Containers in North Queensland, Australia

Susan P. Jacups School of Public Health and Tropical Medicine and Rehabilitative Sciences, The Cairns Institute, James Cook University, Cairns Queensland, Australia; Valent BioSciences, Public Health, Kuala Lumpur, Malaysia

Search for other papers by Susan P. Jacups in
Current site
Google Scholar
PubMed
Close
,
Luke P. Rapley School of Public Health and Tropical Medicine and Rehabilitative Sciences, The Cairns Institute, James Cook University, Cairns Queensland, Australia; Valent BioSciences, Public Health, Kuala Lumpur, Malaysia

Search for other papers by Luke P. Rapley in
Current site
Google Scholar
PubMed
Close
,
Petrina H. Johnson School of Public Health and Tropical Medicine and Rehabilitative Sciences, The Cairns Institute, James Cook University, Cairns Queensland, Australia; Valent BioSciences, Public Health, Kuala Lumpur, Malaysia

Search for other papers by Petrina H. Johnson in
Current site
Google Scholar
PubMed
Close
,
Seleena Benjamin School of Public Health and Tropical Medicine and Rehabilitative Sciences, The Cairns Institute, James Cook University, Cairns Queensland, Australia; Valent BioSciences, Public Health, Kuala Lumpur, Malaysia

Search for other papers by Seleena Benjamin in
Current site
Google Scholar
PubMed
Close
, and
Scott A. Ritchie School of Public Health and Tropical Medicine and Rehabilitative Sciences, The Cairns Institute, James Cook University, Cairns Queensland, Australia; Valent BioSciences, Public Health, Kuala Lumpur, Malaysia

Search for other papers by Scott A. Ritchie in
Current site
Google Scholar
PubMed
Close
Restricted access

In Australia, dengue is not endemic, although the vector mosquito Aedes aegypti is established in far north Queensland (FNQ). Aedes albopictus has recently invaded the Torres Strait region, but is not established on mainland Australia. To maintain dengue-free, public health departments in FNQ closely monitor introduced dengue infections and confine outbreaks through rigorous vector control responses. To safeguard mainland Australia from Ae. albopictus establishment, pre-emptive strategies are required to reduce its breeding in difficult to access habitats. We compare the residual efficacy of VectoBac WDG, Bacillus thuringiensis var. israelensis (Bti) formulation, as a residual treatment when misted across a typical FNQ bushland using a backpack mister (Stihl SR 420 Mist Blower) at two dose rates up to 16 m. Semi-field condition results, over 16 weeks, indicate that Bti provided high mortality rates (> 80%) sustained for 11 weeks. Mist application penetrated 16 m of dense bushland without efficacy decline over distance.

Author Notes

* Address correspondence to Susan P. Jacups, School of Public Health and Tropical Medicine and Rehabilitative Sciences, James Cook University, PO Box 6811, Cairns Queensland 4870, Australia. E-mail: susan.jacups2@jcu.edu.au

Financial support: We thank Valent BioSciences Corp. for financial support.

Authors' addresses: Susan P. Jacups, School of Public Health and Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns Queensland 4870, Australia, and The Cairns Institute, E-mail: susan.jacups2@jcu.edu.au. Luke P. Rapley, Petrina H. Johnson, and Scott A. Ritchie, School of Public Health and Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns Queensland, Australia, E-mails: Luke.Rapley@ffp.csiro.au, petrinahj@gmail.com, and scott.ritchie@jcu.edu.au. Seleena Benjamin, Valent BioSciences, Public Health, Kuala Lumpur, Malaysia, E-mail: Seleena.Benjamin@valent.com.

  • 1.

    World Health Organization, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 2.

    Gubler DJ, 2006. Dengue/dengue hemorrhagic fever: history and current status. Novartis Found Symp 277: 316; discussion 16–22, 71–73, 251–253.

    • Search Google Scholar
    • Export Citation
  • 3.

    Kay BH, Barker-Hudson P, Stallman ND, Wiemers MA, Marks EN, Holt PJ, Muscio M, Gorman BM, 1984. Dengue fever. Reappearance in northern Queensland after 26 years. Med J Aust 140: 264268.

    • Search Google Scholar
    • Export Citation
  • 4.

    Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA, 2010. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis 4: e920.

    • Search Google Scholar
    • Export Citation
  • 5.

    Azil AH, Long SA, Ritchie SA, Williams CR, 2010. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Trop Med Int Health 15: 11901197.

    • Search Google Scholar
    • Export Citation
  • 6.

    Ritchie SA, Vazquez-Prokopec GM, 2010. The 2009 Cairns dengue epidemic: our perfect storm. Local solutions to global threats. 9th Mosquito Control Association of Australia Conference. Caloundra: Mosquito Control Association of Australia, September 12–15, 2010.

    • Search Google Scholar
    • Export Citation
  • 7.

    Russell RC, 1998. Vectors vs. humans in Australia–who is on top down under? An update on vector-borne disease and research on vectors in Australia. J Vector Ecol 23: 146.

    • Search Google Scholar
    • Export Citation
  • 8.

    Ritchie SA, Moore P, Carruthers M, Williams C, Montgomery B, Foley P, Ahboo S, van den Hurk AF, Lindsay MD, Cooper B, Beebe N, Russell RC, 2006. Discovery of a widespread infestation of Aedes albopictus in the Torres Strait, Australia. J Am Mosq Control Assoc 22: 358365.

    • Search Google Scholar
    • Export Citation
  • 9.

    Hayden MH, Uejio CK, Walker K, Ramberg F, Moreno R, Rosales C, Gameros M, Mearns LO, Zielinski-Gutierrez E, Janes CR, 2010. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX border. EcoHealth 7: 6477.

    • Search Google Scholar
    • Export Citation
  • 10.

    Barker-Hudson P, Jones R, Kay BH, 1988. Categorization of domestic breeding habitats of Aedes aegypti (Diptera: Culicidae) in Northern Queensland, Australia. J Med Entomol 25: 178182.

    • Search Google Scholar
    • Export Citation
  • 11.

    Montgomery BL, Ritchie SA, 2002. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am J Trop Med Hyg 67: 244246.

    • Search Google Scholar
    • Export Citation
  • 12.

    Williams CR, Johnson PH, Long SA, Rapley LP, Ritchie SA, 2008. Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation. J Med Entomol 45: 11731179.

    • Search Google Scholar
    • Export Citation
  • 13.

    Lam PH, Boon CS, Yng NY, Benjamin S, 2010. Aedes albopictus control with spray application of Bacillus thuringiensis israelensis, strain AM 65-52. Southeast Asian J Trop Med Public Health 41: 10711081.

    • Search Google Scholar
    • Export Citation
  • 14.

    Stoops CA, 2005. Influence of Bacillus thuringiensis var. israelensis on oviposition of Aedes albopictus (Skuse). J Vector Ecol 30: 4144.

    • Search Google Scholar
    • Export Citation
  • 15.

    Nasci RS, Wright GB, Willis FS, 1994. Control of Aedes albopictus larvae using time-release larvicide formulations in Louisiana. J Am Mosq Control Assoc 10: 16.

    • Search Google Scholar
    • Export Citation
  • 16.

    Russell RC, Williams CR, Sutherst RW, Ritchie SA, 2005. Aedes (Stegomyia) albopictus–a dengue threat for southern Australia? Commun Dis Intell 29: 296298.

    • Search Google Scholar
    • Export Citation
  • 17.

    Ritchie SA, Rapley LP, Benjamin S, 2010. Bacillus thuringiensis var. israelensis (Bti) provides residual control of Aedes aegypti in small containers. Am J Trop Med Hyg 82: 10531059.

    • Search Google Scholar
    • Export Citation
  • 18.

    Chen CD, Lee HL, Nazni WA, Seleena B, Lau KW, Daliza AR, Ella Syafinas S, Mohd Sofian A, 2009. Field effectiveness of Bacillus thuringiensis israelensis (Bti) against Aedes (Stegomyia) aegypti (Linnaeus) in ornamental ceramic containers with common aquatic plants. Trop Biomed 26: 100105.

    • Search Google Scholar
    • Export Citation
  • 19.

    Tan AW, Loke SR, Benjamin S, Lee HL, Chooi KH, Sofian-Azirun M, 2012. Spray application of Bacillus thuringiensis israelensis (Bti strain am65-52) against Aedes aegypti (L.) and Ae. albopictus Skuse populations and impact on dengue transmission in a dengue endemic residential site in Malaysia. Southeast Asian J Trop Med Public Health 43: 296310.

    • Search Google Scholar
    • Export Citation
  • 20.

    World Health Organization, 2007. WHO specifications and evaluations for Public Health Pesticides: Bacillus thuringiensis subspecies israelensis Strain AM65-52. Geneva: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mulla MS, Thavara U, Tawatsin A, Chompoosri J, 2004. Procedures for the evaluation of field efficacy of slow-release formulations of larvicides against Aedes aegypti in water-storage containers. J Am Mosq Control Assoc 20: 6473.

    • Search Google Scholar
    • Export Citation
  • 22.

    Lacey LA, 2007. Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23: 133163.

    • Search Google Scholar
    • Export Citation
  • 23.

    Lee HL, Gregorio ER Jr, Khadri MS, Seleena P, 1996. Ultralow volume application of Bacillus thuringiensis ssp. israelensis for the control of mosquitoes. J Am Mosq Control Assoc 12: 651655.

    • Search Google Scholar
    • Export Citation
  • 24.

    Australian Bureau of Meteorology, 2012. Australian Bureau of Meteorology Website. Available at: http://www.bom.gov.au. Accessed October 4, 2012.

    • Search Google Scholar
    • Export Citation
  • 25.

    Yap HH, Chong AS, Adanan CR, Chong NL, Rohaizat B, Malik YA, Lim SY, 1997. Performance of ULV formulations (Pesguard 102/Vectobac 12AS) against three mosquito species. J Am Mosq Control Assoc 13: 384388.

    • Search Google Scholar
    • Export Citation
  • 26.

    Lima JB, de Melo NV, Valle D, 2005. Residual effect of two Bacillus thuringiensis var. israelensis products assayed against Aedes aegypti (Diptera: Culicidae) in laboratory and outdoors at Rio de Janeiro, Brazil. Rev Inst Med Trop Sao Paulo 47: 125130.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 26 26 11
Full Text Views 335 141 1
PDF Downloads 77 21 1
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save