Weather-Driven Variation in Dengue Activity in Australia Examined Using a Process-Based Modeling Approach

Melanie Bannister-Tyrrell National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by Melanie Bannister-Tyrrell in
Current site
Google Scholar
PubMed
Close
,
Craig Williams National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by Craig Williams in
Current site
Google Scholar
PubMed
Close
,
Scott A. Ritchie National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by Scott A. Ritchie in
Current site
Google Scholar
PubMed
Close
,
Gina Rau National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by Gina Rau in
Current site
Google Scholar
PubMed
Close
,
Janette Lindesay National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by Janette Lindesay in
Current site
Google Scholar
PubMed
Close
,
Geoff Mercer National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by Geoff Mercer in
Current site
Google Scholar
PubMed
Close
, and
David Harley National Centre for Epidemiology and Population Health, and Fenner School of the Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, Aouth Australia, Australia; School of Public Health, Tropical Medicine and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia

Search for other papers by David Harley in
Current site
Google Scholar
PubMed
Close
Restricted access

The impact of weather variation on dengue transmission in Cairns, Australia, was determined by applying a process-based dengue simulation model (DENSiM) that incorporated local meteorologic, entomologic, and demographic data. Analysis showed that inter-annual weather variation is one of the significant determinants of dengue outbreak receptivity. Cross-correlation analyses showed that DENSiM simulated epidemics of similar relative magnitude and timing to those historically recorded in reported dengue cases in Cairns during 1991–2009, (r = 0.372, P < 0.01). The DENSiM model can now be used to study the potential impacts of future climate change on dengue transmission. Understanding the impact of climate variation on the geographic range, seasonality, and magnitude of dengue transmission will enhance development of adaptation strategies to minimize future disease burden in Australia.

Author Notes

* Address correspondence to David Harley, National Centre for Epidemiology and Population Health, Australian National University, Building 62, Canberra 0200, Australian Capital Territory, Australia. E-mail: david.harley@anu.edu.au

Authors' addresses: Melanie Bannister-Tyrrell, Australian National University, Canberra, Australian Capital Territory, Australia, E-mail: melanie.bt@gmail.com. Craig Williams, Sansom Institute, University of South Australia, Adelaide, South Australia, Australia, E-mail: craig.williams@unisa.edu.au. Scott A. Ritchie, School of Public Health, Tropical Medicine, and Rehabilitation Sciences, James Cook University, Cairns, Queensland, Australia, E-mails: scott.ritchie@jcu.edu.au or scott_ritchie@health.qld.gov.au. Gina Rau, School of Natural and Built Environments, University of South Australia, Mawson Lakes, South Australia, Australia, E-mail: gina.rau@unisa.edu.au. Janet Lindesay, Fenner School of Environment and Society, Australian National University, Canberra, Australian Capital Territory, Australia, E-mail: janette.lindesay@anu.edu.au. Geoff Mercer and David Harley, National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australian Capital Territory, Australia, E-mails: geoff.mercer@anu.edu.au and david.harley@anu.edu.au.

  • 1.

    Guzman A, Istúriz RE, 2010. Update on the global spread of dengue. Int J Antimicrob Agents 36: S40S42.

  • 2.

    Lambrechts L, Scott TW, Gubler DJ, 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646.

    • Search Google Scholar
    • Export Citation
  • 3.

    Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.

    • Search Google Scholar
    • Export Citation
  • 4.

    Focks DA, Daniels E, Haile DG, Keesling JE, 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489506.

    • Search Google Scholar
    • Export Citation
  • 5.

    Patz JA, Martens WJ, Focks DA, Jetten TH, 1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106: 147153.

    • Search Google Scholar
    • Export Citation
  • 6.

    Otero M, Solari HG, 2010. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math Biosci 223: 3246.

    • Search Google Scholar
    • Export Citation
  • 7.

    Huey RB, Tewksbury JJ, 2009. Can behavior douse the fire of climate warming? Proc Natl Acad Sci USA 106: 36473648.

  • 8.

    Thai KT, Cazelles B, Nguyen NV, Vo LT, Boni MF, Farrar J, Simmons CP, van Doorn HR, de Vries PJ, 2010. Dengue dynamics in Binh Thuan Province, southern Vietnam: periodicity, synchronicity and climate variability. PLoS Negl Trop Dis 4: e747.

    • Search Google Scholar
    • Export Citation
  • 9.

    Hales S, Weinstein P, Woodward A, 1996. Dengue fever epidemics in the South Pacific: driven by El Nino Southern Oscillation? Lancet 348: 16641665.

    • Search Google Scholar
    • Export Citation
  • 10.

    Hu W, Clements A, Williams G, Tong S, 2010. Dengue fever and El Niño/Southern Oscillation in Queensland, Australia: a time series predictive model. Occup Environ Med 67: 307311.

    • Search Google Scholar
    • Export Citation
  • 11.

    Colon-Gonzalez FJ, Lake IR, Bentham G, 2011. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg 84: 757763.

  • 12.

    Wu P-C, Lay J-G, Guo H-R, Lin C-Y, Lung S-C, Su H-J, 2009. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407: 22242233.

    • Search Google Scholar
    • Export Citation
  • 13.

    Johansson MA, Dominici F, Glass GE, 2009. Local and global effects of climate on dengue transmission in Puerto Rico. PLoS Negl Trop Dis 3: e382.

    • Search Google Scholar
    • Export Citation
  • 14.

    Lu L, Lin H, Tian L, Yang W, Sun J, Liu Q, 2009. Time series analysis of dengue fever and weather in Guangzhou, China. BMC Public Health 9: 395.

  • 15.

    Hii YL, Rocklov J, Ng N, Tang CS, Pang FY, Sauerborn R, 2009. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore. Glob Health Action 2009 Nov 11: 2.

    • Search Google Scholar
    • Export Citation
  • 16.

    Jetten TH, Focks DA, 1997. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 57: 285297.

    • Search Google Scholar
    • Export Citation
  • 17.

    Hales S, de Wet N, Maindonald J, Woodward A, 2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830834.

    • Search Google Scholar
    • Export Citation
  • 18.

    Hopp MJ, Foley JA, 2001. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Change 48: 441463.

  • 19.

    Hanna JN, Ritchie SA, Richards AR, Taylor CT, Pyke AT, Montgomery BL, Piispanen JP, Morgan AK, Humphreys JL, 2006. Multiple outbreaks of dengue serotype 2 in north Queensland, 2003/04. Aust N Z J Public Health 30: 220225.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hanna JN, Ritchie SA, Merritt AD, van den Hurk AF, Phillips DA, Serafin IL, Norton RE, McBride WJ, Gleeson FV, Poidinger M, 1998. Two contiguous outbreaks of dengue type 2 in north Queensland. Med J Aust 168: 221225.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kitchener S, Leggat PA, Brennan L, McCall B, 2002. Importation of dengue by soldiers returning from East Timor to north Queensland, Australia. J Travel Med 9: 180183.

    • Search Google Scholar
    • Export Citation
  • 22.

    Beebe NW, Cooper RD, Mottram P, Sweeney AW, 2009. Australia's dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3: e429.

    • Search Google Scholar
    • Export Citation
  • 23.

    Kay BH, Barker-Hudson P, Stallman ND, Wiemers MA, Marks EN, Holt PJ, Musico M, Gorman BM, 1984. Dengue fever. Reappearance in northern Queensland after 26 years. Med J Aust 140: 264268.

    • Search Google Scholar
    • Export Citation
  • 24.

    Russell RC, Currie BJ, Lindsay MD, Mackenzie JS, Ritchie SA, Whelan PI, 2009. Dengue and climate change in Australia: predictions for the future should incorporate knowledge from the past. Med J Aust 190: 265268.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hanna JN, Ritchie SA, 2009. Outbreaks of dengue in north Queensland, 1990–2008. Commun Dis Intell 33: 3233.

  • 26.

    Ritchie S, 2009. Dengue: Australia's other pandemic. Microbiol Aust 30: 114117.

  • 27.

    Woodruff RE, McMichael T, Butler C, Hales S, 2006. Action on climate change: the health risks of procrastinating. Aust N Z J Public Health 30: 567571.

    • Search Google Scholar
    • Export Citation
  • 28.

    Campbell-Lendrum D, Woodruff RE, 2007. Climate change: quantifying the health impact at national and local levels. Prüss-Üstün A, Corvalán C, eds. WHO Environmental Burden of Disease Series. Geneva: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 29.

    Banu S, Hu W, Hurst C, Tong S, 2011. Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop Med Int Health 16: 598607.

    • Search Google Scholar
    • Export Citation
  • 30.

    Pascual M, Ahumada JA, Chaves LF, Rodó X, Bouma M, 2006. Malaria resurgence in the east African highlands: temperature trends revisited. Proc Natl Acad Sci U S A 103: 58295834.

    • Search Google Scholar
    • Export Citation
  • 31.

    Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): simulation results and validation. J Med Entomol 30: 10181028.

    • Search Google Scholar
    • Export Citation
  • 32.

    Kearney M, Porter WP, Williams C, Ritchie S, Hoffmann AA, 2009. Integrating biophysical models and evolutionary theory to predict climatic impacts on species' ranges: the dengue mosquito Aedes aegypti in Australia. Funct Ecol 23: 528538.

    • Search Google Scholar
    • Export Citation
  • 33.

    Zhang Y, Bi P, Hiller JE, 2008. Climate change and the transmission of vector-borne disease: a review. Asia Pac J Pac J Public Health 20: 6476.

    • Search Google Scholar
    • Export Citation
  • 34.

    Keating J, 2001. An investigation into the cyclical incidence of dengue fever. Soc Sci Med 53: 15871597.

  • 35.

    Fitzsimmons GJ, Wright P, Johansen CA, Whelan PI; National Arbovirus and Malaria Advisory Committee, 2010. Arboviral diseases and malaria in Australia, 2008–09: Annual report of the National Arbovirus and Malaria Advisory Committee. Commun Dis Intell 34: 225240.

    • Search Google Scholar
    • Export Citation
  • 36.

    Williams CR, Johnson PH, Long SA, Rapley LP, Ritchie SA, 2008. Rapid estimation of Aedes aegypti population size using simulation modeling, with a novel approach to calibration and field validation. J Med Entomol 45: 11731179.

    • Search Google Scholar
    • Export Citation
  • 37.

    Queensland Health, 2000. Dengue Fever Management Plan: 2000–2005. Cairns: Queensland Health Tropical Public Health Unit.

  • 38.

    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9: 8689.

    • Search Google Scholar
    • Export Citation
  • 39.

    Rogers DJ, Randolph SE, 2006. Climate change and vector-borne diseases. Adv Parasitol 62: 345381.

  • 40.

    Vazquez-Prokopec GM, Kitron U, Montgomery B, Horne P, Ritchie SA, 2010. Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment. PLoS Negl Trop Dis 4: e920.

    • Search Google Scholar
    • Export Citation
  • 41.

    Seed CR, Kiely P, Hyland CA, Keller AJ, 2009. The risk of dengue transmission by blood during a 2004 outbreak in Cairns, Australia. Transfusion 49: 14821487.

    • Search Google Scholar
    • Export Citation
  • 42.

    Shang CS, Fang CT, Liu CM, Wen TH, Tsai KH, King CC, 2010. The role of imported cases and favorable meteorological conditions in the onset of dengue epidemics. PLoS Negl Trop Dis 4: e775.

    • Search Google Scholar
    • Export Citation
  • 43.

    Kay BH, Ryan PA, Russell BM, Holt JS, Lyons SA, Foley PN, 2000. The importance of subterranean mosquito habitat to arbovirus vector control strategies in north Queensland, Australia. J Med Entomol 37: 846853.

    • Search Google Scholar
    • Export Citation
  • 44.

    Russell BM, McBride WJ, Mullner H, Kay BH, 2001. Epidemiological significance of subterranean Aedes aegypti (Diptera: Culicidae) breeding sites to dengue virus infection in Charters Towers, 1993. J Med Entomol 39: 143145.

    • Search Google Scholar
    • Export Citation
  • 45.

    Timbal B, Fernandez E, Li Z, 2009. Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ Model Softw 24: 341358.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 21 21 3
Full Text Views 513 143 0
PDF Downloads 91 18 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save