Host Selection of Potential West Nile Virus Vectors in Puerto Barrios, Guatemala, 2007

Rebekah C. Kading Centers for Disease Control and Prevention, Division of Vector-Borne Diseases Arbovirus Diseases Branch, Fort Collins, Colorado; Centro de Estudios en Salud Universidad del Valle de Guatemala, Guatemala City, Guatemala

Search for other papers by Rebekah C. Kading in
Current site
Google Scholar
PubMed
Close
,
Ana Silvia Gonzalez Reiche Centers for Disease Control and Prevention, Division of Vector-Borne Diseases Arbovirus Diseases Branch, Fort Collins, Colorado; Centro de Estudios en Salud Universidad del Valle de Guatemala, Guatemala City, Guatemala

Search for other papers by Ana Silvia Gonzalez Reiche in
Current site
Google Scholar
PubMed
Close
,
Maria Eugenia Morales-Betoulle Centers for Disease Control and Prevention, Division of Vector-Borne Diseases Arbovirus Diseases Branch, Fort Collins, Colorado; Centro de Estudios en Salud Universidad del Valle de Guatemala, Guatemala City, Guatemala

Search for other papers by Maria Eugenia Morales-Betoulle in
Current site
Google Scholar
PubMed
Close
, and
Nicholas Komar Centers for Disease Control and Prevention, Division of Vector-Borne Diseases Arbovirus Diseases Branch, Fort Collins, Colorado; Centro de Estudios en Salud Universidad del Valle de Guatemala, Guatemala City, Guatemala

Search for other papers by Nicholas Komar in
Current site
Google Scholar
PubMed
Close
Restricted access

The selection of vertebrate hosts by Culex mosquitoes relative to West Nile virus (WNV) transmission in neotropical countries such as Guatemala is not described. This study determined the feeding patterns of Cx. quinquefasciatus and Cx. nigripalpus and estimated the relative contribution of two common and frequently infected wild bird species, Turdus grayi and Quiscalus mexicanus, to WNV transmission. Engorged mosquitoes were collected from rural and urban habitats after the dry and wet seasons in the Department of Izabal in 2007. Host selection by Cx. nigripalpus varied significantly between urban and rural habitats. Both Cx. quinquefasciatus and Cx. nigripalpus fed predominantly on chickens and other domestic animals. Blood meals from wild birds were rare, accounting for 1.1% of blood meals identified from Cx. quinquefasciatus and 6.5% of blood meals from Cx. nigripalpus. Transmission of WNV by these two mosquito species may be dampened by extensive feeding on reservoir-incompetent hosts.

Author Notes

* Address correspondence to Rebekah C. Kading, Centers for Disease Control and Prevention, Division of Vector-Borne Diseases, Arbovirus Diseases Branch, 3150 Rampart Road, Fort Collins, CO 80521. E-mail: fxk7@cdc.gov

Financial support: This research was funded by the Centers for Disease Control and Prevention, Cooperative Agreement U50/CCU021236-01 between the Centers for Disease Control and Prevention and the Universidad de Valle del Guatemala, and a Robert E. Shope International Fellowship in Infectious Diseases award.

Authors' addresses: Rebekah C. Kading and Nicholas Komar, Centers for Disease Control and Prevention, Division of Vector-Borne and Infectious Diseases, Arbovirus Diseases Branch, Fort Collins, CO, E-mails: fxk7@cdc.gov and nck6@cdc.gov. Ana Silvia Gonzales Reiche, Department of Veterinary Medicine, University of Maryland, College Park, MD, E-mail: agonzalez@ces.uvg.edu.gt. Maria Eugenia Morales-Betoulle, Viral and Zoonotic Diseases Research Program, US Naval Medical Research Unit No. 3 (NAMRU-3), Cairo, Egypt, E-mail: maria.morales.ctr.gt@med.navy.mil.

  • 1.

    Morales-Betoulle ME, Morales H, Blitvich BJ, Powers AM, Davis EA, Klein R, Cordón-Rosales C, 2006. West Nile virus in horses, Guatemala. Emerg Infect Dis 12: 1038–1039.

    • Search Google Scholar
    • Export Citation
  • 2.

    Morales-Betoulle ME, Komar N, Panella N, Alvarez D, López MR, Betoulle J-L, Sosa SM, Müller ML, Kilpatrick AM, Lanciotti RS, Johnson BW, Powers AM, Cordón-Rosales C, Arbovirus Ecology Workgroup, 2013. West Nile virus ecology in a tropical ecosystem in Guatemala. Am J Trop Med Hyg 88: 116–126.

    • Search Google Scholar
    • Export Citation
  • 3.

    Ulloa A, Ferguson HH, Mendez-Sanchez JD, Danis-Lozano R, Casas-Martinez M, Bond JG, Garcia-Zebadu JC, Orozco-bonilla A, Juarez-Ordaz JA, Farfan-Ale JA, Garcia-Rejon JE, Rosado-Paredes EP, Edwards E, Komar N, Hassan HK, Unnasch TR, Rodriguez-Perez MA, 2009. West Nile virus activity in mosquitoes and domestic animals in Chiapas, Mexico. Vector Borne Zoonotic Dis 9: 555–560.

    • Search Google Scholar
    • Export Citation
  • 4.

    Barrera R, MacKay A, Amador M, Vasquez J, Smith J, DĆ­az A, Acevedo V, CabĆ”n B, Hunsperger EA, MuƱoz-JordĆ”n JL, 2010. Mosquito vectors of West Nile virus during an epizootic outbreak in Puerto Rico. J Med Entomol 47: 1185–1195.

    • Search Google Scholar
    • Export Citation
  • 5.

    Darsie RF Jr, 1994. A revised checklist of the mosquitoes of Guatemala including a new country record, Psorophora cyanescens. J Am Mosq Control Assoc 10: 511–514.

    • Search Google Scholar
    • Export Citation
  • 6.

    Kerr KCR, Stoeckle MY, Dove CJ, Weigt LA, Francis CM, Hebert PDN, 2007. Comprehensive DNA barcode coverage of North American birds. Mol Ecol Notes 7: 535–543.

    • Search Google Scholar
    • Export Citation
  • 7.

    Clark-Gil S, Darsie RF Jr, 1983. The mosquitoes of Guatemala, their identification, distribution and bionomics, with keys to adult females and larvae, in English and Spanish. Mosq Systematics 15: 151–284.

    • Search Google Scholar
    • Export Citation
  • 8.

    Kent RJ, Aspen S, Williams M, Savage HM, 2010. Development of a multiplexed PCR diagnostic to identify common members of the subgenera Culex (Culex) and Culex (Phenacomyia) in Guatemala. Am J Trop Med Hyg 83: 285–291.

    • Search Google Scholar
    • Export Citation
  • 9.

    Kent RJ, Thuma P, Mharakurwa S, Norris DE, 2007. Seasonality, blood feeding behavior and transmission of Plasmodium falciparum by Anopheles arabiensis following an extended drought in southern Zambia. Am J Trop Med Hyg 76: 267–274.

    • Search Google Scholar
    • Export Citation
  • 10.

    Sudia WD, Chamberlain RW, 1962. Battery operated light trap, an improved model. Mosq News 22: 126–129.

  • 11.

    Reiter P, 1983. A portable, battery-powered trap or collecting gravid Culex mosquitoes. Mosq News 43: 496–498.

  • 12.

    Kent RJ, Gonzalez Reiche AS, Morales-Betoulle ME, Komar N, 2010. Comparison of engorged Culex quinquefasciatus collection and blood-feeding pattern among four collection methods in Puerto Barrios, Guatemala, 2007. J Am Mosq Control Assoc 26: 332–336.

    • Search Google Scholar
    • Export Citation
  • 13.

    Ralph CJ, Sauer JR, Droege S, 1995. Monitoring Bird Populations by Point Counts. Available at: http://www.fs.fed.us/psw/publications/documents/gtr-149/. Accessed June 18, 2012.

    • Search Google Scholar
    • Export Citation
  • 14.

    Kent RJ, Juluisson L, Weissmann M, Evans S, Komar N, 2009. Seasonal blood feeding behavior of Culex tarsalis in Weld County, Colorado. J Med Entomol 46: 380–390.

    • Search Google Scholar
    • Export Citation
  • 15.

    Kent RJ, Norris DE, 2005. Identification of mammalian blood meals of mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome b. Am J Trop Med Hyg 73: 336–342.

    • Search Google Scholar
    • Export Citation
  • 16.

    Cicero C, Johnson NK, 2001. Higher-level phylogeny of new world vireos (Aves: Vireonidae) based on sequences of multiple mitochondrial DNA genes. Mol Phylo Evol 20: 27–40.

    • Search Google Scholar
    • Export Citation
  • 17.

    Ngo KA, Kramer LD, 2003. Identification of mosquito bloodmeals using polymerase chain reaction (PCR) with order-specific primers. J Med Entomol 40: 215–222.

    • Search Google Scholar
    • Export Citation
  • 18.

    Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN, 2007. Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7: 544–548.

  • 19.

    Meece JK, Reynolds CE, Stockwell PJ, Jenson TA, Christensen JE, Reed KD, 2005. Identification of mosquito bloodmeal source by terminal restriction fragment length polymorphism profile analysis of the cytochrome b gene. J Med Entomol 42: 657–667.

    • Search Google Scholar
    • Export Citation
  • 20.

    Kay BH, Boreham PFL, Edman JD, 1979. Application of the ā€œfeeding indexā€ concept to studies of mosquito host-feeding patterns. Mosq News 59: 68–72.

    • Search Google Scholar
    • Export Citation
  • 21.

    Kilpatrick AM, Daszak P, Jones MJ, Marra PP, Kramer LD, 2006. Host heterogeneity dominates West Nile virus transmission. Proc Biol Sci 22: 2327–2333.

    • Search Google Scholar
    • Export Citation
  • 22.

    Guerrero-SĆ”nchez S, Cuevas-Romero S, Nemeth NM, Trujillo-Olivera MTJ, Worwa G, Brault AC, Kramer LD, Komar N, Estrada-Franco JG, 2011. Response of Mexican birds to West Nile virus infection. Emerg Infect Dis 17: 2245–2252.

    • Search Google Scholar
    • Export Citation
  • 23.

    Edman JD, 1974. Host-feeding patterns of Florida mosquitoes III. Culex (Culex) and Culex (Neoculex). J Med Entomol 11: 95–104.

  • 24.

    Cupp WW, Sherer WF, Lok JB, Brenner RJ, Dziem GM, OrdoƱez JV, 1986. Entomological studies at an enzootic Venezuelan equine encephalitis virus focus in Guatemala, 1977–1980. Am J Trop Med Hyg 35: 851–859.

    • Search Google Scholar
    • Export Citation
  • 25.

    Christensen HA, de Vasquez AM, Boreham MM, 1996. Host-feeding patterns of mosquitoes (Diptera: Culicidae) from central Panama. Am J Trop Med Hyg 55: 202–208.

    • Search Google Scholar
    • Export Citation
  • 26.

    Gomes AC, Silva NN, Marques GRAM, Brito M, 2003. Host-feeding patterns of potential human disease vectors in the Paraiba Valley region, State of Sao Paulo, Brazil. J Vector Ecol 28: 74–78.

    • Search Google Scholar
    • Export Citation
  • 27.

    Tempelis CH, Hayes RO, Hess AD, Reeves WC, 1970. Blood-feeding habits of four species of mosquito found in Hawaii. Am J Trop Med Hyg 19: 335–341.

    • Search Google Scholar
    • Export Citation
  • 28.

    Irby WS, Apperson CS, 1988. Host of mosquitoes in the coastal plain of North Carolina. J Med Entomol 25: 85–93.

  • 29.

    Elizondo-Quiroga A, Flores-Suarez A, Elizondo-Quiroga D, Ponce-Garcia G, Blitvich BJ, Contreras-Cordero JF, Gonzalez-Rojas JI, Mercadl-Hernandez R, Beaty BJ, Fernandez-Salas I, 2006. Host-feeding preference of Culex quinquefasciatus in Monterrey, northeastern Mexico. J Am Mosq Control Assoc 22: 654–661.

    • Search Google Scholar
    • Export Citation
  • 30.

    Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Charnetzky D, McMillen L, Unnasch EA, Unnasch TR, 2007. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7: 365–386.

    • Search Google Scholar
    • Export Citation
  • 31.

    Niebylski ML, Meek CL, 1992. Blood-feeding of Culex mosquitoes in an urban environment. J Am Mosq Control Assoc 8: 173–177.

  • 32.

    Molaei G, Andreadis TG, Armstrong PM, Bueno R Jr, Dennett JA, Real SV, Sargent C, Bala A, Randle Y, Guzman H, Travassos da Rosa A, Wuithiranyagool T, Tesh RA, 2007. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas. Am J Trop Med Hyg 77: 73–81.

    • Search Google Scholar
    • Export Citation
  • 33.

    Reisen WK, Wheeler S, Armijos MV, Fang Y, Garcia S, Kelley K, Wright S, 2009. Role of communally nesting ardeid birds in the epidemiology of West Nile virus revisited. Vector Borne Zoonotic Dis 9: 275–280.

    • Search Google Scholar
    • Export Citation
  • 34.

    Loss SR, Hamer GL, Goldberg TL, Ruiz MO, Kitron UD, Walker ED, Brawn JD, 2009. Nestling passerines are not important hosts for amplification of West Nile virus in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 13–18.

    • Search Google Scholar
    • Export Citation
  • 35.

    Millins C, Reid A, Curry P, Drebot MA, Andonova M, Buck P, Leighton FA, 2011. Evaluating the use of house sparrow nestlings as sentinels for West Nile virus in Saskatchewan. Vector Borne Zoonotic Dis 11: 53–58.

    • Search Google Scholar
    • Export Citation
  • 36.

    Griffing SM, Kilpatrick AM, Clark L, Marra PP, 2007. Mosquito landing rates on nesting American robins (Turdus migratorius). Vector Borne Zoonotic Dis 7: 437–443.

    • Search Google Scholar
    • Export Citation
  • 37.

    Burkett-Cadena ND, McClure CJ, Ligon RA, Graham SP, Guyer C, Hill GE, Ditchkoff SS, Eubanks MD, Hassan HK, Unnasch TR, 2011. Host reproductive phenology drives seasonal patterns of host use in mosquitoes. PLoS One 6: e17681.

    • Search Google Scholar
    • Export Citation
  • 38.

    O'Brien VA, Meteyer CU, Reisen WK, Ip HS, Brown CR, 2010. Prevalence and pathology of West Nile virus in naturally infected house sparrows, western Nebraska, 2008. Am J Trop Med Hyg 82: 937–944.

    • Search Google Scholar
    • Export Citation
  • 39.

    Loftin KM, Byford RL, Loftin MJ, Craig ME, Steiner RL, 1997. Host preference of mosquitoes in Bernalillo County, New Mexico. J Am Mosq Control Assoc 13: 71–75.

    • Search Google Scholar
    • Export Citation
  • 40.

    Sardelis MR, Turell MJ, Dohm DJ, O'Guinn ML, 2001. Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg Infect Dis 7: 1018–1022.

    • Search Google Scholar
    • Export Citation
  • 41.

    Molaei G, Cummings RF, Su T, Armstrong PM, Williams GA, Cheng ML, Webb JP, Andreadis TG, 2010. Vector-host interactions governing epidemiology of West Nile virus in southern California. Am J Trop Med Hyg 83: 1269–1282.

    • Search Google Scholar
    • Export Citation
  • 42.

    Klenk K, Komar N, 2003. Poor replication of West Nile virus (New York 1999 strain) in three reptilian and one amphibian species. Am J Trop Med Hyg 69: 260–262.

    • Search Google Scholar
    • Export Citation
  • 43.

    Kostyukov MA, Alekseev AN, Bul'chev VP, Gordeeva ZE, 1986. Experimentally proven infection of Culex pipiens L. mosquitoes with West Nile fever virus via the Lake Pallas Rana ridibunda frog and its transmission via bites. Med Parazitol (Mosk) 6: 76–78.

    • Search Google Scholar
    • Export Citation
  • 44.

    Klenk K, Snow J, Morgan K, Bowen R, Stephens M, Foster F, Gordy P, Beckett S, Komar N, Gubler D, Bunning M, 2004. Alligators as West Nile virus amplifiers. Emerg Infect Dis 10: 2150–2155.

    • Search Google Scholar
    • Export Citation
  • 45.

    Unlu I, Kramer WL, Roy AF, Foil LD, 2010. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana. J Med Entomol 47: 625–633.

    • Search Google Scholar
    • Export Citation
  • 46.

    Barrera R, Amador MA, Young GR, Komar N, 2011. Mosquito (Diptera: Culicidae) blood meal sources in Puerto Rico. J Med Entomol 48: 701–704.

  • 47.

    Tempelis CH, Francy DB, Hayes RO, Lofy MF, 1967. Variations in feeding patterns of seven culicine mosquitoes on vertebrate hosts in Weld and Larimer Counties, Colorado. Am J Trop Med Hyg 16: 111–119.

    • Search Google Scholar
    • Export Citation
  • 48.

    Kilpatrick AM, Kramer LD, Jones MJ, Marra PP, Daszak P, 2006. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol 4: 606–610.

    • Search Google Scholar
    • Export Citation
  • 49.

    Edman JD, Taylor DJ, 1968. Culex nigripalpus: seasonal shift in the bird-mammal feeding ratio in a mosquito vector of human encephalitis. Science 161: 67–68.

    • Search Google Scholar
    • Export Citation
  • 50.

    Nelson RL, Tempelis CH, Reeves WC, Milby MM, 1976. Relation of mosquito density to bird:mammal feeding ratios of Culex tarsalis in stable traps. Am J Trop Med Hyg 25: 644–654.

    • Search Google Scholar
    • Export Citation
  • 51.

    Bertsch ML, Norment BR, 1983. The host-feeding patterns of Culex quinquefasciatus in Mississippi. Mosq News 43: 203–206.

Past two years Past Year Past 30 Days
Abstract Views 33 33 4
Full Text Views 374 75 0
PDF Downloads 64 10 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save