Field Evaluation of a PCR Test for Schistosoma japonicum Egg Detection in Low-Prevalence Regions of China

Mai S. Fung Environmental Health Sciences, School of Public Health, University of California, Berkeley, California; Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, China

Search for other papers by Mai S. Fung in
Current site
Google Scholar
PubMed
Close
,
Ning Xiao Environmental Health Sciences, School of Public Health, University of California, Berkeley, California; Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, China

Search for other papers by Ning Xiao in
Current site
Google Scholar
PubMed
Close
,
Shuo Wang Environmental Health Sciences, School of Public Health, University of California, Berkeley, California; Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, China

Search for other papers by Shuo Wang in
Current site
Google Scholar
PubMed
Close
, and
Elizabeth J. Carlton Environmental Health Sciences, School of Public Health, University of California, Berkeley, California; Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China; National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, China

Search for other papers by Elizabeth J. Carlton in
Current site
Google Scholar
PubMed
Close
Restricted access

Sensitive Schistosoma japonicum detection methods are needed to progress from schistosomiasis control to elimination. The sensitivity of the Kato-Katz thick smear and miracidium hatching tests decrease with infection intensity and serological tests cannot always identify current infections. We evaluated a fecal polymerase chain reaction (PCR) assay to detect S. japonicum infection in 106 humans and 8 bovines in China. PCR was highly sensitive, detecting S. japonicum DNA at 0.5 eggs/g of stool. Comparing PCR examination of a single stool sample to the miracidium hatching test using three consecutive stool samples, more humans were hatching test positive (20%) than PCR positive (15%). However, two individuals were PCR positive in a village where no infections were detected by coprological methods. The sensitivity of PCR makes it a promising tool for schistosomiasis diagnostics and screening, although egg shedding variability and stool sample size present challenges for any detection method in low-transmission areas.

Author Notes

* Address correspondence to Elizabeth J. Carlton, Environmental Health Sciences, School of Public Health, University of California, Berkeley, 50 University Hall, Berkeley, CA 94720-7360. E-mail: ejcarlton@berkeley.edu

Financial support: This work was made possible by a grant from the Center for Global Public Health at the University of California, Berkeley and a grant from the National Institute for Allergy and Infectious Diseases (R01AI068854).

Authors' addresses: Mai S. Fung, Shuo Wang, and Elizabeth J. Carlton, Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, E-mails: maifung@berkeley.edu, shuowang@berkeley.edu, and ejcarlton@berkeley.edu. Ning Xiao, Institute of Parasitic Diseases, Sichuan Center for Disease Control and Prevention, Chengdu, Sichuan, China (Ning Xiao's current address is National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai, China), E-mail: ningxiao116@yahoo.com.cn.

  • 1.

    Zhou XN, Bergquist R, Leonardo L, Yang GJ, Yang K, Sudomo M, Olveda R, 2010. Schistosomiasis japonica control and research needs. Adv Parasitol 72: 145–178.

    • Search Google Scholar
    • Export Citation
  • 2.

    Wang LD, Guo JG, Wu XH, Chen HG, Wang TP, Zhu SP, Zhang ZH, Steinmann P, Yang GJ, Wang SP, Wu ZD, Wang LY, Hao Y, Bergquist R, Utzinger J, Zhou XN, 2009. China's new strategy to block Schistosoma japonicum transmission: experiences and impact beyond schistosomiasis. Trop Med Int Health 14: 1475–1483.

    • Search Google Scholar
    • Export Citation
  • 3.

    Savioli L, Gabrielli AF, Montresor A, Chitsulo L, Engels D, 2009. Schistosomiasis control in Africa: 8 years after World Health Assembly Resolution 54.19. Parasitology 136: 1677–1681.

    • Search Google Scholar
    • Export Citation
  • 4.

    WHO, 2009. Elimination of Schistosomiasis from Low-Transmission Areas: Report of a WHO Informal Consultation. Salvador, Brazil: WHO.

  • 5.

    Lin DD, Liu JX, Liu YM, Hu F, Zhang YY, Xu JM, Li JY, Ji MJ, Bergquist R, Wu GL, Wu HW, 2008. Routine Kato-Katz technique underestimates the prevalence of Schistosoma japonicum: a case study in an endemic area of the People's Republic of China. Parasitol Int 57: 281–286.

    • Search Google Scholar
    • Export Citation
  • 6.

    Yu JM, de Vlas SJ, Jiang QW, Gryseels B, 2007. Comparison of the Kato-Katz technique, hatching test and indirect hemagglutination assay (IHA) for the diagnosis of Schistosoma japonicum infection in China. Parasitol Int 56: 45–49.

    • Search Google Scholar
    • Export Citation
  • 7.

    Zhang YY, Luo JP, Liu YM, Wang QZ, Chen JH, Xu MX, Xu JM, Wu J, Tu XM, Wu GL, Zhang ZS, Wu HW, 2009. Evaluation of Kato-Katz examination method in three areas with low-level endemicity of schistosomiasis japonica in China: a Bayesian modeling approach. Acta Trop 112: 16–22.

    • Search Google Scholar
    • Export Citation
  • 8.

    Xu J, Peeling RW, Chen JX, Wu XH, Wu ZD, Wang SP, Feng T, Chen SH, Li H, Guo JG, Zhou XN, 2011. Evaluation of immunoassays for the diagnosis of Schistosoma japonicum infection using archived sera. PLoS Negl Trop Dis 5: e949.

    • Search Google Scholar
    • Export Citation
  • 9.

    Zhou XN, Xu J, Chen HG, Wang TP, Huang XB, Lin DD, Wang QZ, Tang L, Guo JG, Wu XH, Feng T, Chen JX, Guo J, Chen SH, Li H, Wu ZD, Peeling RW, 2011. Tools to support policy decisions related to treatment strategies and surveillance of schistosomiasis japonica towards elimination. PLoS Negl Trop Dis 5: e1408.

    • Search Google Scholar
    • Export Citation
  • 10.

    Zhu YC, 2005. Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop 96: 130–136.

  • 11.

    Wang W, Li Y, Li H, Xing Y, Qu G, Dai J, Liang Y, 2012. Immunodiagnostic efficacy of detection of Schistosoma japonicum human infections in China: a meta analysis. Asian Pac J Trop Med 5: 15–23.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gomes LI, Marques LH, Enk MJ, Coelho PM, Rabello A, 2009. Further evaluation of an updated PCR assay for the detection of Schistosoma mansoni DNA in human stool samples. Mem Inst Oswaldo Cruz 104: 1194–1196.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hamburger J, He N, Abbasi I, Ramzy RM, Jourdane J, Ruppel A, 2001. Polymerase chain reaction assay based on a highly repeated sequence of Schistosoma haematobium: a potential tool for monitoring schistosome-infested water. Am J Trop Med Hyg 65: 907–911.

    • Search Google Scholar
    • Export Citation
  • 14.

    Pontes LA, Dias-Neto E, Rabello A, 2002. Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces. Am J Trop Med Hyg 66: 157–162.

    • Search Google Scholar
    • Export Citation
  • 15.

    Pontes LA, Oliveira MC, Katz N, Dias-Neto E, Rabello A, 2003. Comparison of a polymerase chain reaction and the Kato-Katz technique for diagnosing infection with Schistosoma mansoni. Am J Trop Med Hyg 68: 652–656.

    • Search Google Scholar
    • Export Citation
  • 16.

    Sandoval N, Siles-Lucas M, Perez-Arellano JL, Carranza C, Puente S, Lopez-Aban J, Muro A, 2006. A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitology 133: 581–587.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lier T, Johansen MV, Hjelmevoll SO, Vennervald BJ, Simonsen GS, 2008. Real-time PCR for detection of low intensity Schistosoma japonicum infections in a pig model. Acta Trop 105: 74–80.

    • Search Google Scholar
    • Export Citation
  • 18.

    Lier T, Simonsen GS, Haaheim H, Hjelmevoll SO, Vennervald BJ, Johansen MV, 2006. Novel real-time PCR for detection of Schistosoma japonicum in stool. Southeast Asian J Trop Med Public Health 37: 257–264.

    • Search Google Scholar
    • Export Citation
  • 19.

    Lier T, Simonsen GS, Wang T, Lu D, Haukland HH, Vennervald BJ, Hegstad J, Johansen MV, 2009. Real-time polymerase chain reaction for detection of low-intensity Schistosoma japonicum infections in China. Am J Trop Med Hyg 81: 428–432.

    • Search Google Scholar
    • Export Citation
  • 20.

    Thanchomnang T, Intapan P, Sri-Aroon P, Lulitanond V, Janwan P, Sanpool O, Maleewong W, 2011. Molecular detection of Schistosoma japonicum in infected snails and mouse feces using a real-time PCR assay with FRET hybridization probes. Mem Inst Oswaldo Cruz 106: 831–836.

    • Search Google Scholar
    • Export Citation
  • 21.

    Wu HW, Qin YF, Chu K, Meng R, Liu Y, McGarvey ST, Olveda R, Acosta L, Ji MJ, Fernandez T, Friedman JF, Kurtis JD, 2010. High prevalence of Schistosoma japonicum infection in water buffaloes in the Philippines assessed by real-time polymerase chain reaction. Am J Trop Med Hyg 82: 646–652.

    • Search Google Scholar
    • Export Citation
  • 22.

    Xia CM, Rong R, Lu ZX, Shi CJ, Xu J, Zhang HQ, Gong W, Luo W, 2009. Schistosoma japonicum: a PCR assay for the early detection and evaluation of treatment in a rabbit model. Exp Parasitol 121: 175–179.

    • Search Google Scholar
    • Export Citation
  • 23.

    Liang S, Yang C, Zhong B, Qiu D, 2006. Re-emerging schistosomiasis in hilly and mountainous areas of Sichuan, China. Bull World Health Organ 84: 139–144.

    • Search Google Scholar
    • Export Citation
  • 24.

    Carlton EJ, Bates MN, Zhong B, Seto EY, Spear RC, 2011. Evaluation of mammalian and intermediate host surveillance methods for detecting schistosomiasis reemergence in southwest China. PLoS Negl Trop Dis 5: e987.

    • Search Google Scholar
    • Export Citation
  • 25.

    Department of Diseases Control, 2000. Textbook for Schistosomiasis Control. Shanghai: Shanghai Publishing House for Science and Technology.

    • Search Google Scholar
    • Export Citation
  • 26.

    Katz N, Chaves A, Pellegrino J, 1972. A simple device for quantitative stool thick-smear technique in schistosomiasis mansoni. Rev Inst Med Trop Sao Paulo 14: 397–400.

    • Search Google Scholar
    • Export Citation
  • 27.

    Dacombe RJ, Crampin AC, Floyd S, Randall A, Ndhlovu R, Bickle Q, Fine PE, 2007. Time delays between patient and laboratory selectively affect accuracy of helminth diagnosis. Trans R Soc Trop Med Hyg 101: 140–145.

    • Search Google Scholar
    • Export Citation
  • 28.

    King CH, Dickman K, Tisch DJ, 2005. Reassessment of the cost of chronic helmintic infection: a meta-analysis of disability-related outcomes in endemic schistosomiasis. Lancet 365: 1561–1569.

    • Search Google Scholar
    • Export Citation
  • 29.

    Carlton EJ, Hsiang M, Zhang Y, Johnson S, Hubbard A, Spear RC, 2010. The impact of Schistosoma japonicum infection and treatment on ultrasound-detectable morbidity: a five-year cohort study in Southwest China. PLoS Negl Trop Dis 4: e685.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ezeamama AE, Friedman JF, Olveda RM, Acosta LP, Kurtis JD, Mor V, McGarvey ST, 2005. Functional significance of low-intensity polyparasite helminth infections in anemia. J Infect Dis 192: 2160–2170.

    • Search Google Scholar
    • Export Citation
  • 31.

    Spear RC, Seto EY, Carlton EJ, Liang S, Remais JV, Zhong B, Qiu D, 2011. The challenge of effective surveillance in moving from low transmission to elimination of schistosomiasis in China. Int J Parasitol 41: 1243–1247.

    • Search Google Scholar
    • Export Citation
  • 32.

    Yu JM, de Vlas SJ, Yuan HC, Gryseels B, 1998. Variations in fecal Schistosoma japonicum egg counts. Am J Trop Med Hyg 59: 370–375.

  • 33.

    Ross AG, Li Y, Sleigh AC, Williams GM, McManus DP, 1998. Fecal egg aggregation in humans infected with Schistosoma japonicum in China. Acta Trop 70: 205–210.

    • Search Google Scholar
    • Export Citation
  • 34.

    Hubbard A, Liang S, Maszle D, Qiu D, Gu X, Spear RC, 2002. Estimating the distribution of worm burden and egg excretion of Schistosoma japonicum by risk group in Sichuan province, China. Parasitology 125: 221–231.

    • Search Google Scholar
    • Export Citation
  • 35.

    Xu J, Rong R, Zhang HQ, Shi CJ, Zhu XQ, Xia CM, 2010. Sensitive and rapid detection of Schistosoma japonicum DNA by loop-mediated isothermal amplification (LAMP). Int J Parasitol 40: 327–331.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 39 39 14
Full Text Views 477 102 0
PDF Downloads 71 14 0
 
Membership Banner
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save