• 1.

    Faran M, 1980. Mosquito studies (Diptera: Culicidae) XXXIV. A revision of the Albimanus section of the subgenus Nyssorhynchus of Anopheles. Contrib Am Entomol Inst 15: 1214.

    • Search Google Scholar
    • Export Citation
  • 2.

    Chadee DD, Wilkerson RC, 2005. Anopheles triannulatus (Neiva and Pinto): a new Anopheles record from Trinidad, West Indies. J Am Mosq Control Assoc 21: 316317.

    • Search Google Scholar
    • Export Citation
  • 3.

    Oliveira-Ferreira J, Lourenco-de-Oliveira R, Teva A, Deane LM, Daniel-Ribeiro CT, 1990. Natural malaria infections in anophelines in Rondonia State, Brazilian Amazon. Am J Trop Med Hyg 43: 610.

    • Search Google Scholar
    • Export Citation
  • 4.

    de Arruda M, Carvalho MB, Nussenzweig RS, Maracic M, Ferreira AW, Cochrane AH, 1986. Potential vectors of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil identified by immunoassay. Am J Trop Med Hyg 35: 873881.

    • Search Google Scholar
    • Export Citation
  • 5.

    Tadei WP, Dutary-Thatcher B, 2000. Malaria vectors in the Brazilian Amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop Sao Paulo 42: 8794.

    • Search Google Scholar
    • Export Citation
  • 6.

    Aramburú J, Ramal C, Witzig R, 1999. Malaria reemergence in the Peruvian Amazon Region. Emerg Infect Dis 5: 209215.

  • 7.

    Benarroch EI, 1931. Studies on malaria in Venezuela. Am J Epidemiol 14: 690693.

  • 8.

    Gabaldon A, Cova Garcia P, 1946. Zoogeografìa de los anofelinos en Venezuela. I. Los dos vectores principales. Tijeretazos Malar 10: 78127.

    • Search Google Scholar
    • Export Citation
  • 9.

    Rosa-Freitas MG, Lourenco-de-Oliveira R, de Carvalho-Pinto CJ, Flores-Mendoza C, Silva-do-Nascimento TF, 1998. Anopheline species complexes in Brazil. Current knowledge of those related to malaria transmission. Mem Inst Oswaldo Cruz 93: 651655.

    • Search Google Scholar
    • Export Citation
  • 10.

    Silva-do-Nascimento TF, Lourenço-de-Oliveira R, 2002. Anopheles halophylus, a new species of the subgenus Nyssorhynchus (Diptera: Culicidae) from Brazil. Mem Inst Oswaldo Cruz 97: 801811.

    • Search Google Scholar
    • Export Citation
  • 11.

    Silva-do-Nascimento TF, Wilkerson RC, Lourenço-de-Oliveira R, Monteiro FA, 2006. Molecular confirmation of the specific status of Anopheles halophylus (Diptera: Culicidae) and evidence of a new cryptic species within An. triannulatus in central Brazil. J Med Entomol 43: 455459.

    • Search Google Scholar
    • Export Citation
  • 12.

    Santos JM, Maia JF, Tadei WP, 2004. Differentiation and genetic variability in natural populations of Anopheles (N.) triannulatus (Neiva & Pinto, 1922) of Brazilian Amazonia. Braz J Biol 64: 327336.

    • Search Google Scholar
    • Export Citation
  • 13.

    Pedro PM, Uezu A, Sallum MA, 2010. Concordant phylogeographies of 2 malaria vectors attest to common spatial and demographic histories. J Hered 101: 618627.

    • Search Google Scholar
    • Export Citation
  • 14.

    Silva-do-Nascimento TF, Rona LD, Peixoto AA, Lourenço-de-Oliveira R, 2011. Molecular divergence in the timeless and cpr genes among three sympatric cryptic species of the Anopheles triannulatus complex. Mem Inst Oswaldo Cruz 106 (Suppl I): 218222.

    • Search Google Scholar
    • Export Citation
  • 15.

    Zapata MA, Cienfuegos AV, Quiros OI, Quiñones ML, Luckhart S, Correa MM, 2007. Discrimination of seven Anopheles species from San Pedro de Uraba, Antioquia, Colombia, by polymerase chain reaction-restriction fragment length polymorphism analysis of ITS sequences. Am J Trop Med Hyg 77: 6772.

    • Search Google Scholar
    • Export Citation
  • 16.

    Cienfuegos AV, Rosero DA, Naranjo N, Luckhart S, Conn JE, Correa MM, 2011. Evaluation of a PCR-RFLP-ITS2 assay for discrimination of Anopheles species in northern and western Colombia. Acta Trop 118: 128135.

    • Search Google Scholar
    • Export Citation
  • 17.

    Brochero H, Pareja PX, Ortiz G, Olano VA, 2006. Breeding places and biting activity of Anopheles species in the municipality of Cimitarra, Santander, Colombia. Biomedica 26: 269277.

    • Search Google Scholar
    • Export Citation
  • 18.

    Gutiérrez LA, Gonzalez JJ, Gomez GF, Castro MI, Rosero DA, Luckhart S, Conn JE, Correa MM, 2009. Species composition and natural infectivity of anthropophilic Anopheles (Diptera:Culicidae) in the states of Cordoba and Antioquia, northwestern Colombia. Mem Inst Oswaldo Cruz 104: 11171124.

    • Search Google Scholar
    • Export Citation
  • 19.

    Gutiérrez LA, Naranjo N, Jaramillo LM, Muskus C, Luckhart S, Conn JE, Correa MM, 2008. Natural infectivity of Anopheles species from the Pacific and Atlantic Regions of Colombia. Acta Trop 107: 99105.

    • Search Google Scholar
    • Export Citation
  • 20.

    Rodríguez M, Pérez L, Caicedo JC, Prieto G, Arroyo JA, Kaur H, Suarez-Mutis M, de La Hoz F, Lines J, Alexander N, 2009. Composition and biting activity of Anopheles (Diptera: Culicidae) in the Amazon region of Colombia. J Med Entomol 46: 307315.

    • Search Google Scholar
    • Export Citation
  • 21.

    González R, Carrejo N, 2009. Introducción al estudio taxonómico de Anopheles de Colombia: claves y notas de distribución. Second edition. Programa Editorial Universidad de Valle, Cali.

    • Search Google Scholar
    • Export Citation
  • 22.

    Rosero DA, Gutiérrez LA, Cienfuegos AV, Jaramillo LM, Correa MM, 2010. Optimización de un procedimiento de extracción de ADN para mosquitos anofelinos. Rev Chil Entomol 36: 260263.

    • Search Google Scholar
    • Export Citation
  • 23.

    Vincze T, Posfai J, Roberts RJ, 2003. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31: 36883691.

  • 24.

    Marrelli MT, Floeter-Winter LM, Malafronte RS, Tadei WP, Lourenco-de-Oliveira R, Flores-Mendoza C, Marinotti O, 2005. Amazonian malaria vector anopheline relationships interpreted from ITS2 rDNA sequences. Med Vet Entomol 19: 208218.

    • Search Google Scholar
    • Export Citation
  • 25.

    Oliveira de Carvalho M, 2002. FragSize: DNA Band Size Determination. Available at: http://www.bioinformatics.org. Accessed October 2011.

  • 26.

    Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A, 2011. Research Software for Biologists, Not Computer Scientists. Available at: http://www.geneious.com. Accessed October 2011.

    • Search Google Scholar
    • Export Citation
  • 27.

    Edgar RC, 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.

  • 28.

    Keller A, Schleicher T, Schultz J, Müller T, Dandekar T, Wolf M, 2009. 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430: 5057. Available at: http://its2.bioapps.biozentrum.uni-wuerzburg.de/. Accessed October 2011.

    • Search Google Scholar
    • Export Citation
  • 29.

    Lunt DH, Zhang DX, Szymura JM, Hewitt GM, 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Mol Biol 5: 153165.

    • Search Google Scholar
    • Export Citation
  • 30.

    Gutiérrez LA, Naranjo NJ, Cienfuegos AV, Muskus CE, Luckhart S, Conn JE, Correa MM, 2009. Population structure analyses and demographic history of the malaria vector Anopheles albimanus from the Caribbean and the Pacific regions of Colombia. Malar J 8: 259.

    • Search Google Scholar
    • Export Citation
  • 31.

    Hlaing T, Tun-Lin W, Somboon P, Socheat D, Setha T, Min S, Chang MS, Walton C, 2009. Mitochondrial pseudogenes in the nuclear genome of Aedes aegypti mosquitoes: implications for past and future population genetic studies. BMC Genet 10: 11.

    • Search Google Scholar
    • Export Citation
  • 32.

    Buhay JE, 2009. “COI-like” sequences are becoming problematic in molecular systematic and DNA barcoding studies. J Crustac Biol 29: 96110.

    • Search Google Scholar
    • Export Citation
  • 33.

    Song H, Buhay JE, Whiting MF, Crandall KA, 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proc Natl Acad Sci USA 105: 1348613491.

    • Search Google Scholar
    • Export Citation
  • 34.

    Moreno M, Marinotti O, Krzywinski J, Tadei WP, James AA, Achee NL, Conn JE, 2010. Complete mtDNA genomes of Anopheles darlingi and an approach to anopheline divergence time. Malar J 9: 127.

    • Search Google Scholar
    • Export Citation
  • 35.

    Ahumada M, Quiñones ML, 2009. Determinación del papel como vector de malaria de las especies de Anopheles presentes en el Departamento del Meta, Colombia. Tesis de Maestría. Universidad Nacional de Colombia, Facultad de Medicina, Infecciones y Salud en el Trópico.

    • Search Google Scholar
    • Export Citation
  • 36.

    Sallum MA, Schultz TR, Foster PG, Aronstein K, Wirtz RA, Wilkerson RC, 2002. Phylogeny of Anophelinae (Diptera: Culicidae) based on nuclear ribosomal and mitochondrial DNA sequences. Syst Entomol 27: 361382.

    • Search Google Scholar
    • Export Citation
  • 37.

    Clement M, Posada D, Crandall KA, 2000. TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 16571659.

  • 38.

    Crandall KA, Templeton AR, 1993. Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134: 959969.

    • Search Google Scholar
    • Export Citation
  • 39.

    Bandelt HJ, Forster P, Rohl A, 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 3748.

  • 40.

    Fluxus Technology, 2012. Network 4.6.1.0. Copyright 2011 Fluxus Technology Ltd. All rights reserved. Available at: www.fluxus-engineering.com/network_terms.htm.

    • Search Google Scholar
    • Export Citation
  • 41.

    Huson DH, Bryant D, 2006. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254267.

  • 42.

    Bryant D, Moulton V, 2004. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21: 255265.

  • 43.

    Huelsenbeck JP, Ronquist F, 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.

  • 44.

    Posada D, 2008. jModelTest: phylogenetic model averaging. Mol Biol Evol 25: 12531256.

  • 45.

    Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R, 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19: 24962497.

    • Search Google Scholar
    • Export Citation
  • 46.

    Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750.

    • Search Google Scholar
    • Export Citation
  • 47.

    Wright S, 1951. The genetical structure of populations. Ann Eugen 15: 323354.

  • 48.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.

    • Search Google Scholar
    • Export Citation
  • 49.

    Fu YX, 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147: 915925.

    • Search Google Scholar
    • Export Citation
  • 50.

    Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.

  • 51.

    Fu YX, Li WH, 1993. Statistical tests of neutrality of mutations. Genetics 133: 693709.

  • 52.

    Rogers AR, Harpending H, 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9: 552569.

    • Search Google Scholar
    • Export Citation
  • 53.

    Rogers AR, 1995. Genetic evidence for a Pleistocene population explosion. Evolution 49: 608615.

  • 54.

    Harpending HC, 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66: 591600.

    • Search Google Scholar
    • Export Citation
  • 55.

    Schneider S, Excoffier L, 1999. Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152: 10791089.

    • Search Google Scholar
    • Export Citation
  • 56.

    Scarpassa VM, Conn JE, 2011. MtDNA tracks a complex evolutionary history with Pleistocene divergence for the neotropical malaria vector Anopheles nuneztovari sensu lato. Am J Trop Med Hyg 85: 857867.

    • Search Google Scholar
    • Export Citation
  • 57.

    Loaiza JR, Scott ME, Bermingham E, Rovira J, Conn JE, 2010. Evidence for pleistocene population divergence and expansion of Anopheles albimanus in Southern Central America. Am J Trop Med Hyg 82: 156164.

    • Search Google Scholar
    • Export Citation
  • 58.

    Castelloe J, Templeton AR, 1994. Root probabilities for intraspecific gene trees under neutral coalescent theory. Mol Phylogenet Evol 3: 102113.

    • Search Google Scholar
    • Export Citation
  • 59.

    Hasan AU, Suguri S, Fujimoto C, Itaki RL, Harada M, Kawabata M, Bugoro H, Albino B, 2008. Genetic diversity in two sibling species of the Anopheles punctulatus group of mosquitoes on Guadalcanal in the Solomon Islands. BMC Evol Biol 8: 318.

    • Search Google Scholar
    • Export Citation
  • 60.

    Pedro PM, Sallum MA, 2009. Spatial expansion and population structure of the neotropical malaria vector, Anopheles darlingi (Diptera: Culicidae). Biol J Linn Soc Lond 97: 854866.

    • Search Google Scholar
    • Export Citation
  • 61.

    Hewitt G, 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907913.

  • 62.

    Matthews SD, Meehan LJ, Onyabe DY, Vineis J, Nock I, Ndams I, Conn JE, 2007. Evidence for late Pleistocene population expansion of the malarial mosquitoes, Anopheles arabiensis and Anopheles gambiae in Nigeria. Med Vet Entomol 21: 358369.

    • Search Google Scholar
    • Export Citation
  • 63.

    de Queiroz K, 2007. Species concepts and species delimitation. Syst Biol 56: 879886.

  • 64.

    Wiens JJ, Penkrot TA, 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloporus). Syst Biol 51: 6991.

    • Search Google Scholar
    • Export Citation
  • 65.

    Reeves PA, Richards CM, 2011. Species delimitation under the general lineage concept: an empirical example using wild North American hops (Cannabaceae: Humulus lupulus). Syst Biol 60: 4559.

    • Search Google Scholar
    • Export Citation
  • 66.

    Lehmann T, Diabate A, 2008. The molecular forms of Anopheles gambiae: a phenotypic perspective. Infect Genet Evol 8: 737746.

  • 67.

    McKeon SN, Lehr MA, Wilkerson RC, Ruiz JF, Sallum MA, Lima JB, Povoa MM, Conn JE, 2010. Lineage divergence detected in the malaria vector Anopheles marajoara (Diptera: Culicidae) in Amazonian Brazil. Malar J 9: 271.

    • Search Google Scholar
    • Export Citation
  • 68.

    Moulton MJ, Song H, Whiting MF, 2010. Assessing the effects of primer specificity on eliminating numt coamplification in DNA barcoding: a case study from Orthoptera (Arthropoda: Insecta). Mol Ecol Resour 1: 615627.

    • Search Google Scholar
    • Export Citation
  • 69.

    Ruiz F, Wilkerson R, Conn JE, McKeon SN, Levin DM, Quiñones M, Povoa M, Linton YM, 2012. DNA barcoding reveals both known and novel taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors. Parasites & Vectors 5: 44.

    • Search Google Scholar
    • Export Citation
  • 70.

    Avise JC, 2004. Molecular Markers, Natural History, and Evolution. Second edition. Sunderland, MA: Sinauer.

  • 71.

    O'Loughlin SM, Somboon P, Walton C, 2007. High levels of population structure caused by habitat islands in the malarial vector Anopheles scanloni. Heredity 99: 3140.

    • Search Google Scholar
    • Export Citation
  • 72.

    Walton C, Handley JM, Tun-Lin W, Collins FH, Harbach RE, Baimai V, Butlin RK, 2000. Population structure and population history of Anopheles dirus mosquitoes in Southeast Asia. Mol Biol Evol 17: 962974.

    • Search Google Scholar
    • Export Citation
  • 73.

    Hebert PD, Cywinska A, Ball SL, deWaard JR, 2003. Biological identifications through DNA barcodes. Proc Biol Sci 270: 313321.

  • 74.

    Foley DH, Wilkerson RC, Cooper RD, Volovsek ME, Bryan JH, 2007. A molecular phylogeny of Anopheles annulipes (Diptera: Culicidae) sensu lato: the most species-rich anopheline complex. Mol Phylogenet Evol 43: 283297.

    • Search Google Scholar
    • Export Citation
  • 75.

    Meyer CP, Paulay G, 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3: e422.

  • 76.

    Loaiza JR, Scott ME, Bermingham E, Sanjur OI, Wilkerson R, Rovira J, Gutierrez LA, Correa MM, Grijalva MJ, Birnberg L, Bickersmith S, Conn JE, 2010. Late Pleistocene environmental changes lead to unstable demography and population divergence of Anopheles albimanus in the northern Neotropics. Mol Phylogenet Evol 57: 13411346.

    • Search Google Scholar
    • Export Citation
  • 77.

    Mirabello L, Conn JE, 2006. Molecular population genetics of the malaria vector Anopheles darlingi in Central and South America. Heredity 96: 311321.

    • Search Google Scholar
    • Export Citation
  • 78.

    Mirabello L, Conn JE, 2008. Population analysis using the nuclear white gene detects Pliocene/Pleistocene lineage divergence within Anopheles nuneztovari in South America. Med Vet Entomol 22: 109119.

    • Search Google Scholar
    • Export Citation
  • 79.

    Gutiérrez LA, Gomez GF, Gonzalez JJ, Castro MI, Luckhart S, Conn JE, Correa MM, 2010. Microgeographic genetic variation of the malaria vector Anopheles darlingi root (Diptera: Culicidae) from Cordoba and Antioquia, Colombia. Am J Trop Med Hyg 83: 3847.

    • Search Google Scholar
    • Export Citation
  • 80.

    Barraclough TG, Vogler AP, 2000. Detecting the geographical pattern of speciation from species-level phylogenies. Am Nat 155: 419434.

 

 

 

 

Genetic Diversity of Anopheles triannulatus s.l. (Diptera: Culicidae) from Northwestern and Southeastern Colombia

View More View Less
  • Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia; Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York; Department of Biomedical Sciences, School of Public Health, State University of New York-Albany, New York

Anopheles triannulatus s.l. is a species complex, however in Colombia its taxonomic status is unclear. This study was conducted to understand the level of genetic differentiation or population structure of specimens of An. triannulatus s.l. from northwestern and southeastern Colombia. Cytochrome oxidase subunit I (COI) and internal transcribed spacer (ITS2) sequence analyses suggested high genetic differentiation between the NW and SE populations. A TCS network and Bayesian inference analysis based on 814 bp of COI showed two main groups: group I included samples from the NW and group II samples from the SE. Two main ITS2-polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) patterns were found. Pattern I is present in both the NW and SE, and pattern II is found in the SE specimens. To further elucidate the taxonomic status of An. triannulatus s.l. in Colombia and how these COI lineages are related to the Triannulatus Complex species, the evaluation of immature stages, male genitalia, and additional mitochondrial and nuclear markers will be needed.

Author Notes

* Address correspondence to Margarita M. Correa, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Calle 67 No. 53-108, of. 5-430, Medellín, Colombia. E-mail: mcorrea@quimbaya.udea.edu.co

Financial support: This study was supported by Comité para el Desarrollo de la Investigación-CODI, Universidad de Antioquia, grant 8700-033 to DAR, the United States National Institutes of Health grants R03 AI076710-02 to MMC and R01 AI54139-02 to JEC.

Authors' addresses: Doris A. Rosero, Luz M. Jaramillo, Lina A. Gutiérrez, and Margarita M. Correa, Grupo de Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia, E-mails: roserodoris@hotmail.com, luz.montanito@gmail.com, liangutibui@gmail.com, and mcorrea@quimbaya.udea.edu.co. Jan E. Conn, Griffin Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, New York, E-mail: jconn@wadsworth.org.

Save