• 1.

    Gratz NG, 1999. Emerging and resurging vector-borne diseases. Annu Rev Entomol 44: 5175.

  • 2.

    Gubler DJ, 2002. The global emergence/resurgence of arboviral diseases as public health problems. Arch Med Res 33: 330342.

  • 3.

    San Martin JL, Brathwaite O, Zambrano B, Solorzano JO, Bouckenooghe A, Dayan GH, Guzman MG, 2010. The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 82: 128135.

    • Search Google Scholar
    • Export Citation
  • 4.

    Weaver SC, Reisen WK, 2010. Present and future arboviral threats. Antiviral Res 85: 328345.

  • 5.

    Focks DA, Alexander N, 2006. A Multi-Country Study on the Methodology for Surveys of Aedes Aegypti Pupal Productivity: Findings and Recommendations. Geneva: World Health Organization.

    • Search Google Scholar
    • Export Citation
  • 6.

    Halstead SB, 2008. Dengue virus–mosquito interactions. Annu Rev Entomol 53: 273291.

  • 7.

    Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD, 1993. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol 30: 922927.

    • Search Google Scholar
    • Export Citation
  • 8.

    Christophers SR, 1960. Aedes Aegypti (L.). The Yellow Fever Mosquito. Its Life History, Bionomics and Structure. Cambridge, UK: Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • 9.

    Farnesi LC, Martins AJ, Valle D, Rezende GL, 2009. Embryonic development of Aedes aegypti (Diptera: Culicidae): Influence of different constant temperatures. Mem Inst Oswaldo Cruz 104: 124126.

    • Search Google Scholar
    • Export Citation
  • 10.

    Focks DA, Haile DG, Daniels E, Mount GA, 1993. Dynamic life table model for Aedes aegypti (Diptera: Culicidae): analysis of the literature and model development. J Med Entomol 30: 10031017.

    • Search Google Scholar
    • Export Citation
  • 11.

    Richardson K, Hoffmann AA, Johnson P, Ritchie S, Kearney MR, 2011. Thermal sensitivity of Aedes aegypti from Australia: empirical data and prediction of effects on distribution. J Med Entomol 48: 914923.

    • Search Google Scholar
    • Export Citation
  • 12.

    Yang HM, Macoris MLG, Galvani KC, Andrighetti MTM, Wanderley DMV, 2009. Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137: 11881202.

    • Search Google Scholar
    • Export Citation
  • 13.

    Hopp MJ, Foley JA, 2001. Global-scale relationships between climate and the dengue fever vector, Aedes aegypti. Clim Change 48: 441463.

  • 14.

    Ibanez-Bernal S, 1987. Nuevo registro altitudinal de Aedes (Stegomyia) aegypti (Linnaeus, 1762) (Diptera: Culicidae) en Mexico. Folia Entomol Mex 72: 163164.

    • Search Google Scholar
    • Export Citation
  • 15.

    Suarez MF, Nelson MJ, 1981. Registro de altitud del Aedes aegypti en Colombia. Biomedica 1: 225.

  • 16.

    Herrera-Basto E, Prevots DR, Zarate ML, Silva JL, Sepulveda-Amor J, 1992. First reported outbreak of classical dengue fever at 1,700 meters above sea level in Guerrero State, Mexico, June 1988. Am J Trop Med Hyg 46: 649653.

    • Search Google Scholar
    • Export Citation
  • 17.

    Diaz Najera A, Vargas L, 1973. Mosquitos mexicanos. Distribución geográfica actualizada. Rev Inst Salud Publ 33: 111125.

  • 18.

    Heinemann SJ, Belkin JN, 1977. Collection records of the project “Mosquitoes of Middle America”. 9. Mexico (MEX, MF, MT, MX). Mosq Syst 9: 483535.

    • Search Google Scholar
    • Export Citation
  • 19.

    Tun-Lin W, Lenhart A, Nam VS, Rebollar-Tellez E, Morrison AC, Barbazan P, Cote M, Midega J, Sanchez F, Manrique-Saide P, Kroeger A, Nathan MB, Meheus F, Petzold M, 2009. Reducing costs and operational constraints of dengue vector control by targeting productive breeding places: a multi-country non-inferiority cluster randomized trial. Trop Med Int Health 14: 11431153.

    • Search Google Scholar
    • Export Citation
  • 20.

    Banu S, Hu WB, Hurst C, Tong SL, 2011. Dengue transmission in the Asia-Pacific region: impact of climate change and socio-environmental factors. Trop Med Int Health 16: 598607.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hayden MH, Uejio CK, Walker K, Ramberg F, Moreno R, Rosales C, Gameros M, Mearns LO, Zielinski-Gutierrez E, Janes CR, 2010. Microclimate and human factors in the divergent ecology of Aedes aegypti along the Arizona, US/Sonora, MX border. EcoHealth 7: 6477.

    • Search Google Scholar
    • Export Citation
  • 22.

    Padmanabha H, Soto E, Mosquera M, Lord CC, Lounibos LP, 2010. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7: 7890.

    • Search Google Scholar
    • Export Citation
  • 23.

    Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JLR, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, Banicki AA, Morales PK, Smith B, Munoz JL, Waterman SH, 2008. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 78: 364369.

    • Search Google Scholar
    • Export Citation
  • 24.

    Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, Tiwari T, Baber L, Amador M, Thirion J, Hayes J, Seca C, Mendez J, Ramirez B, Robinson J, Rawlings J, Vorndam V, Waterman S, Gubler D, Clark G, Hayes E, 2003. Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9: 8689.

    • Search Google Scholar
    • Export Citation
  • 25.

    Williams CR, Bader CA, Kearney MR, Ritchie SA, Russell RC, 2010. The extinction of dengue through natural vulnerability of its vectors. PLoS Negl Trop Dis 4: e922.

    • Search Google Scholar
    • Export Citation
  • 26.

    Harrington L, Scott T, Lerdthusnee K, Coleman R, Costero A, Clark G, Jones J, Kitthawee S, Kittayapong P, Sithiprasasna R, 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72: 209220.

    • Search Google Scholar
    • Export Citation
  • 27.

    Azil AH, Long SA, Ritchie SA, Williams CR, 2010. The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Trop Med Int Health 15: 11901197.

    • Search Google Scholar
    • Export Citation
  • 28.

    de Almeida Costa EAP, de Mendonca Santos EM, Correia JC, de Albuquerque CMR, 2010. Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev Bras Entomol 54: 488493.

    • Search Google Scholar
    • Export Citation
  • 29.

    Romero-Vivas CME, Llinas H, Falconar AKI, 2007. Three calibration factors, applied to a rapid sweeping method, can accurately estimate Aedes aegypti (Diptera: Culicidae) pupal numbers in large water-storage containers at all temperatures at which dengue virus transmission occurs. J Med Entomol 44: 930937.

    • Search Google Scholar
    • Export Citation
  • 30.

    Darsie RF Jr, Ward RA, 2005. Identification and Geographical Distribution of the Mosquitoes of North America, North of Mexico. Gainesville, FL: University Press of Florida.

    • Search Google Scholar
    • Export Citation
  • 31.

    Joyce RJ, Janowiak JE, Arkin PA, Xie P, 2004. CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J Hydromet 5: 487503.

    • Search Google Scholar
    • Export Citation
  • 32.

    Ebert EE, Janowiak JE, Kidd C, 2007. Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull Am Meteorol Soc 88: 4764.

    • Search Google Scholar
    • Export Citation
  • 33.

    Sall J, Creighton L, Lehman A, 2005. JMP Start Statistics, 3rd Ed. Belmont, CA: Brooks/Cole.

  • 34.

    Beebe NW, Cooper RD, Mottram P, Sweeney AW, 2009. Australia's dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3: e429.

    • Search Google Scholar
    • Export Citation
  • 35.

    Hales S, de Wet N, Maindonald J, Woodward A, 2002. Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830834.

    • Search Google Scholar
    • Export Citation
  • 36.

    Jetten TH, Focks DA, 1997. Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 57: 285297.

    • Search Google Scholar
    • Export Citation
  • 37.

    Ooi EE, Gubler DJ, 2009. Global spread of epidemic dengue: the influence of environmental change. Future Virol 4: 571580.

  • 38.

    Patz JA, Martens WJM, Focks DA, Jetten TH, 1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106: 147153.

    • Search Google Scholar
    • Export Citation
  • 39.

    Barclay E, 2008. Is climate change affecting dengue in the Americas? Lancet 371: 973974.

  • 40.

    Hansen J, Ruedy R, Sato M, Lo K, 2010. Global surface temperature change. Rev Geophys 48: RG4004.

  • 41.

    Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P, 2007. Regional climate projections. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press.

    • Search Google Scholar
    • Export Citation
  • 42.

    Chowell G, Sanchez F, 2006. Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health 68: 4044.

    • Search Google Scholar
    • Export Citation
  • 43.

    Colon-Gonzalez FJ, Lake IR, Bentham G, 2011. Climate variability and dengue fever in warm and humid Mexico. Am J Trop Med Hyg 84: 757763.

  • 44.

    Machado-Machado EA, 2012. Empirical mapping of suitability to dengue fever in Mexico using species distribution modeling. Appl Geogr 33: 8293.

    • Search Google Scholar
    • Export Citation
  • 45.

    Koopman JS, Prevots DR, Vaca Marin MA, Gomez Dantes H, Zarate Aquino ML, Longini IM Jr, Sepulveda Amor J, 1991. Determinants and predictors of dengue infection in Mexico. Am J Epidemiol 133: 11681178.

    • Search Google Scholar
    • Export Citation
  • 46.

    Davis NC, 1932. The effects of heat and cold upon Aedes (Stegomyia) aegypti. Part I. The survival of Stegomyia eggs under abnormal temperature conditions. Am J Hyg 16: 177191.

    • Search Google Scholar
    • Export Citation
  • 47.

    Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108: 74607465.

    • Search Google Scholar
    • Export Citation

 

 

 

 

The Dengue Virus Mosquito Vector Aedes aegypti at High Elevation in México

View More View Less
  • Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado; National Center for Atmospheric Research, Boulder, Colorado; Centro de Ciencias de la Tierra, Universidad Veracruzana, Calle Francisco J. Moreno 207, Colonia Emiliano Zapata, Xalapa, Veracruz, Mexico; Department of Geography, Florida State University, Tallahassee, Florida; Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado

México has cities (e.g., México City and Puebla City) located at elevations > 2,000 m and above the elevation ceiling below which local climates allow the dengue virus mosquito vector Aedes aegypti to proliferate. Climate warming could raise this ceiling and place high-elevation cities at risk for dengue virus transmission. To assess the elevation ceiling for Ae. aegypti and determine the potential for using weather/climate parameters to predict mosquito abundance, we surveyed 12 communities along an elevation/climate gradient from Veracruz City (sea level) to Puebla City (∼2,100 m). Ae. aegypti was commonly encountered up to 1,700 m and present but rare from 1,700 to 2,130 m. This finding extends the known elevation range in México by > 300 m. Mosquito abundance was correlated with weather parameters, including temperature indices. Potential larval development sites were abundant in Puebla City and other high-elevation communities, suggesting that Ae. aegypti could proliferate should the climate become warmer.

Author Notes

* Address correspondence to Lars Eisen, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523. E-mail: lars.eisen@colostate.edu

Financial support: This study was funded by National Science Foundation Grant GEO-1010204 to the University Corporation for Atmospheric Research.

Authors' addresses: Saul Lozano-Fuentes, Kevin C. Kobylinski, and Lars Eisen, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, E-mails: slozano@colostate.edu, kobylinskikevin@yahoo.com, and lars.eisen@colostate.edu. Mary H. Hayden, Luca Delle Monache, Andrew J. Monaghan, and Daniel F. Steinhoff, National Center for Atmospheric Research, Boulder, CO, E-mails: mhayden@ucar.edu, lucadm@ucar.edu, monaghan@ucar.edu, and steinhof@ucar.edu. Carlos Welsh-Rodriguez, Carolina Ochoa-Martinez, and Berenice Tapia-Santos, Centro de Ciencias de la Tierra, Universidad Veracruzana, Calle Francisco J. Moreno 207, Colonia Emiliano Zapata, Xalapa, Veracruz, Mexico, E-mails: cwelsh@uv.mx, orac8a@gmail.com, and beretap@gmail.com. Christopher K. Uejio, Department of Geography, Florida State University, Tallahassee, FL, E-mail: cuejio@admin.fsu.edu. Emily Zielinski-Gutierrez, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO, E-mail: ebz0@CDC.GOV.

Save