Souza W, 2007. Chagas' disease: facts and reality. Microbes Infect 9: 544–545.
Dias JC, 2009. Elimination of Chagas disease transmission: perspectives. Mem Inst Oswaldo Cruz 104: 41–45.
Kribs-Zaleta CM, 2010. Alternative transmission modes for Trypanosoma cruzi. Math Biosci Eng 7: 657–673.
Brener Z, Gazzinelli RT, 1997. Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas' disease. Int Arch Allergy Appl Immunol 114: 103–110.
Strosberg AM, Barrio K, Stinger VH, Tashker J, Wilbur JC, Wilson L, Woo K, 2007. Chagas Disease: A Latin Nemesis. San Francisco, CA: Institute for OneWorld Health.
World Health Organization, 2010. Chagas disease (American trypanosomiasis). Available at: http://www.who.int/mediacentre/factsheets/fs340/en/index.html#. Accessed January 2010.
Croft S, Barrett M, Urbina J, 2005. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol 21: 508–512.
Hinojosa-Valdez R, Düsman-Tonin LT, Ueda-Nakamura T, Dias-Filho BP, Morgado-Diaz A, Sarragiotto MH, Vataru-Nakamura C, 2009. Biological activity of 1, 2, 3, 4-tetrahydro-β-carboline-3-carboxamides against Trypanosoma cruzi. Acta Trop 110: 7–14.
Leite JP, Oliveira AB, Lombardi JA, Filho JD, Chair E, 2006. Trypanocidal activity of triterpenes from Arrabidaea triplinervia and derivatives. Biol Pharm Bull 29: 2307–2309.
do Nascimento AM, Chaves JS, Albuquerque S, de Oliveira DC, 2004. Trypanocidal properties of Mikania stipulacea and Mikania hoehnei isolated terpenoids. Fitoterapia 75: 381–384.
Ambrósio SR, Arakawa NS, Esperandim VR, de Albuquerque S, Da Costa FB, 2008. Trypanocidal activity of pimarane diterpenes from Viguiera arenaria (Asteraceae). Phytother Res 22: 1413–1415.
Orhan I, Şener B, Kaiser M, Brun R, Tasdemir D, 2010. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs 8: 47–58.
Herrera JC, Troncone G, Henriquez D, Urdaneta N, 2008. Trypanocidal activity of abietane diterpenoids from the roots of Craniolaria annua. Z Naturforsch C 63: 821–829.
Martin D, Tholl D, Gershenzon J, Bohlmann J, 2002. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. Plant Physiol 129: 1003–1018.
San Feliciano A, Gordaliza M, Salinero MA, Miguel del Corral JM, 1993. Abietane acids: sources, biological activities, and therapeutic uses. Planta Med 59: 485–490.
Gao J, Yang L, Jia ZJ, 1997. A new eremophilane sesquiterpenoid and a new iridoid from Pedicularis striata subsp arachnoides. Planta Med 63: 248–250.
Marrero JG, Andres LS, Luis JG, 2002. Semisynthesis of rosmanol and its derivatives. Easy access to abietatriene diterpenes isolated from the genus Salvia with biological activities. J Nat Prod 65: 986–989.
Tan N, Kaloga M, Radtke OA, Kiderlen AF, Oksuz S, Ulubelen A, Kolodziej H, 2002. Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 6: 881–884.
Son KH, Oh HM, Choi SK, Han DC, Kwon BM, 2005. Anti-tumor abietane diterpenes from the cones of Sequoia sempervirens. Bioorg Med Chem Lett 15: 2019–2021.
Alvarez-Manzaneda E, Chahboun R, Cabrera E, Alvarez E, Alvarez-Manzaneda R, Lachkar M, Messouri I, 2007. First synthesis of picealactone C. A new route toward taxodione-related terpenoids from abietic acid. Tetrahedron Lett 48: 989–992.
Alvarez-Manzaneda E, Chahboun R, Cabrera E, Alvarez E, Alvarez-Manzaneda R, Lachkar M, Messouri I, 2007. Synthesis of phenol abietane diterpenes based on the oxidative radical cyclization utilizing the Mn(OAc)3/Ac2O System. Synlett 15: 2425–2429.
Kinouchi Y, Ohtsu H, Tokuda H, Nishino H, Matsunaga S, Tanaka R, 2000. Potential antitumor-promoting diterpenoids from the stem bark of Piceaglehni. J Nat Prod 63: 817–820.
Téllez-Meneses J, Mejía-Jaramillo AM, Triana-Chávez O, 2008. Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trop 108: 26–34.
Luque F, Fernández-Ramos C, Entrala E, Rosales MJ, Navarro JA, Romero MA, Salas-Peregrín JM, Sánchez-Moreno M, 2000. In vitro evaluation of newly synthesized [1,2,4]triazolo[1,5-a]pyrimidine derivatives against Trypanosoma cruzi, Leishmania donovani and Phytomonas staheli. Comp Biochem Physiol 126: 39–44.
Osuna A, Adroher FJ, Lupiañez JA, 1990. Influence of electrolytes and non-electrolytes on growth and differentiation of Trypanosoma cruzi. Cell Differ Dev 30: 89–95.
Moreno D, Plano D, Baquedano Y, Jiménez-Ruiz A, Palop JA, Sanmartín C, 2011. Antileishmanial activity of imidothiocarbamates and imidoselenocarbamates. Parasitol Res 108: 233–239.
da Silva CF, Batista MM, Batista DG, de Souza EM, da Silva PB, de Oliveira GM, Meuser AS, Shareef AR, Boykin DW, Soeiro MN, 2008. In vitro and in vivo studies of the trypanocidal activity of a diarylthiophenediamidine against Trypanosoma cruzi. Antimicrob Agents Chemother 9: 3307–3314.
Maldonado C, Marin C, Olmo F, Huertas O, Quiros M, Sánchez-Moreno M, Rosales MJ, Salas JM, 2010. In vitro and in vivo trypanocidal evaluation of nickel complexes with an azapurine derivative against Trypanosoma cruzi. J Med Chem 53: 6964–6972.
Fernández-Becerra C, Sánchez-Moreno M, Osuna A, Opperdoes FR, 1997. Comparative aspects of energy metabolism in plant trypanosomatids. J Eukaryot Microbiol 44: 523–529.
Porcal W, Hernandez P, Aguirre G, Boiani L, Boiani M, Merlino A, Ferreira A, Di Maio R, Castro A, Gonzalez M, Cerecetto H, 2007. Second generation of 5-ethenylbenzofuroxan derivatives as inhibitors of Trypanosoma cruzi growth: synthesis, biological evaluation, and structure-activity relationships. Bioorg Med Chem 15: 2768–2781.
Nwaka S, Hudson A, 2006. Innovative lead discovery strategies for tropical diseases. Natl Rev 5: 941–955.
Sülsen VP, Frank FM, Cazorla SI, Anesini CA, Malchiodi EL, Freixa B, Vila R, Muschietti LV, Martino VS, 2008. Trypanocidal and leishmanicidal activities of sesquiterpene lactones from Ambrosia tenuifolia Sprengel (Asteraceae). Antimicrob Agents Chemother 52: 2415–2419.
Turrens J, 1999. More differences in energy metabolism between Trypanosomatidae. Parasitol Today 15: 346–348.
Mendoza DT, Ureña González LD, Ortega-arría E, Capson TL, Rios LC, 2003. Five new cassane diterpenes from Myrospermum frutescens with activity against Trypanosoma cruzi. J Nat Prod 66: 928–932.
Sánchez-Moreno M, Sanz AM, Gomez-Contreras F, Navarro P, Marín C, Ramírez-Macias I, Rosales MJ, Olmo F, Garcia-Aranda I, Campayo L, Cano C, Arrebola F, Yunta MJ, 2011. In vivo trypanosomicidal activity of imidazole- or pyrazole-based benzo[g]phthalazine derivatives against acute and chronic phases of Chagas disease. J Med Chem 54: 970–979.
Sartorelli P, Carvalho CS, Reimão JQ, Lorenzi H, Tempone AG, 2010. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera. Planta Med 76: 1454–1456.
Bringaud F, Riviere L, Coustou V, 2006. Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149: 1–9.
Ginger M, 2005. Trypanosomatid biology and euglenozoan evolution: new insights and shifting paradigms revealed through genome sequencing. Protist 156: 377–392.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 1 | 1 | 1 |
Full Text Views | 453 | 144 | 3 |
PDF Downloads | 98 | 34 | 4 |
Four terpenoid derivatives were examined for their activity against Trypanosoma cruzi. Our results show that two compounds were very active in vitro against both extra- and intracellular forms. These compounds, non-toxic for the host cells, are more effective than the reference drug benznidazole. The capacity to infect cells was negatively affected and the number of amastigotes and trypomastigotes was reduced. A wide range of ultrastructural alterations was found in the epimastigote forms treated with these compounds. Some metabolic changes occurred presumably at the level of succinate and acetate production, perhaps caused by the disturbance of the enzymes involved in sugar metabolism inside the mitochondria. In vivo results were consistent with those observed in vitro. The parasitic load was significantly lower than in the control assay with benznidazole. The effects of these products showed the reduction of the anti-T. cruzi antibodies level during the chronic stage.
Authors' addresses: Inmaculada Ramírez-Macías, Clotilde Marín, Francisco Olmo, María José Rosales, and Manuel Sánchez-Moreno, Department of Parasitology, University of Granada, Granada, Spain, E-mails: iramirezm@ugr.es, cmaris@ugr.es, folmoarevalo@ugr.es, mjrosale@ugr.es, and msanchem@ugr.es. Rachid Chahboun, Ibtissam Messouri, and Enrique Alvarez-Manzaneda, Department of Organic Chemistry, Institute of Biothenology, University of Granada, Granada, Spain. E-mails: spr@ugr.es, imessouri@yahoo.fr, and eamr@ugr.es. Ramòn Gutierrez-Sánchez, Department of Statistics, University of Granada, Granada, Spain, E-mail: ramongs@ugr.es.