Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, Temperley WH, Kabaria CW, Tatem AJ, Manh BH, Elyazar IRF, Baird JK, Snow RW, Hay SI, 2010. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: e774.
Price RN, Douglas NM, Anstey NM, 2009. New developments in Plasmodium vivax malaria: severe disease and the rise of chloroquine resistance. Curr Opin Infect Dis 22: 430–435.
Feachem RGA, Phillips AA, Hwang J, Cotter C, Wielgosz B, Greenwood BM, Sabot O, Rodriguez MH, Abeyasinghe RR, Ghebreyesus TA, Snow RW, 2010. Shrinking the malaria map: progress and prospects. Lancet 376: 1566–1578.
Horuk R, Chitnis CE, Darbonne WC, Colby TJ, Rybicki A, Hadley TJ, Miller LH, 1993. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261: 1182–1184.
Gelpi AP, King MC, 1976. Duffy blood group and malaria. Science 191: 1284.
Miller LH, Mason SJ, Dvorak JA, McGinniss MH, Rothman IK, 1975. Erythrocyte receptors for Plasmodium knowlesi malaria: Duffy blood group determinants. Science 189: 561–563.
Mason SJ, Miller LH, Shiroishi T, Dvorak JA, McGinniss MH, 1977. The Duffy blood group determinants: their role in the susceptibility of human and animal erythrocytes to Plasmodium knowlesi malaria. Br J Haematol 36: 327–335.
Miller LH, Mason SJ, Clyde DF, McGinniss MH, 1976. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med 295: 302–304.
Adams JH, Sim BK, Dolan SA, Fang X, Kaslow DC, Miller LH, 1992. A family of erythrocyte binding proteins of malaria parasites. Proc Natl Acad Sci USA 89: 7085–7089.
Young MD, Eyles DE, Burgess RW, Jeffrey GM, 1955. Experimental testing of the immunity of Negroes to Plasmodium vivax. J Parasitol 41: 315.
Menard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, Thonier V, Carod J-F, Domarle O, Colin Y, Bertrand O, Picot J, King CL, Grimberg BT, Mercereau-Puijalon O, Zimmerman PA, 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 5967–5971.
Mendes C, Dias F, Figueiredo J, Mora VG, Cano J, de Sousa B, do Rosario VE, Benito A, Berzosa P, Arez AP, 2011. Duffy negative antigen is no longer a barrier to Plasmodium vivax: molecular evidences from the African west coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis 5: e1192.
Wurtz N, Mint Lekweiry K, Bogreau H, Pradines B, Rogier C, Ould Mohamed Salem Boukhary A, Hafid JE, Ould Ahmedou Salem MS, Trape J-F, Basco L, Briolant S, 2011. Vivax malaria in Mauritania includes infection of a Duffy-negative individual. Malar J 10: 336.
Wang R, Arevalo-Herrera M, Gardner MJ, Bonelo A, Carlton JM, Gomez A, Vera O, Soto L, Vergara J, Bidwell SL, Domingo A, Fraser CM, Herrera S, 2005. Immune responses to Plasmodium vivax pre-erythrocytic stage antigens in naturally exposed Duffy-negative humans: a potential model for identification of liver-stage antigens. Eur J Immunol 35: 1859–1868.
Herrera S, Gomez A, Vera O, Vergara J, Valderrama-Aguirre A, Maestre A, Mendez F, Wang R, Chitnis CE, Yazdani SS, Arevalo-Herrera M, 2005. Antibody response to Plasmodium vivax antigens in Fy-negative individuals from the Columbian Pacific Coast. Am J Trop Med Hyg 73 (Suppl 5): 44–49.
Maestre A, Muskus C, Duque V, Agudelo O, Liu P, Takagi A, Ntumngia FB, Adams JH, Sim KL, Hoffman SL, Corradin G, Velez ID, Wang R, 2010. Acquired antibody responses against Plasmodium vivax infection vary with host genotype for Duffy antigen receptor for chemokines (DARC). PLoS One 5: e11437.
Urban BC, Roberts DJ, 2003. Inhibition of T cell function during malaria: implications for immunology and vaccinology. J Exp Med 197: 137–141.
Ocana-Morgner C, Mota MM, Rodriguez A, 2003. Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med 197: 143–151.
Urban BC, Ferguson DJ, Pain A, Willcox N, Plebanski M, Austyn JM, Roberts DJ, 1999. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400: 73–77.
Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RMR, Crabb BS, del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang'a S, Kooij TWA, Korsinczky M, Meyer EVS, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM, 2008. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757–763.
Westenberger SJ, McClean CM, Chattopadhyay R, Dharia NV, Carlton JM, Barnwell JW, Collins WE, Hoffman SL, Zhou Y, Vinetz JM, Winzeler EA, 2010. A systems-based analysis of Plasmodium vivax lifecycle transcription from human to mosquito. PLoS Negl Trop Dis 4: e653.
Templeton TJ, Kaslow DC, 1997. Cloning and cross-species comparison of the thrombospondin-related anonymous protein (TRAP) gene from Plasmodium knowlesi, Plasmodium vivax and Plasmodium gallinaceum. Mol Biochem Parasitol 84: 13–24.
del Portillo HA, Longacre S, Khouri E, David PH, 1991. Primary structure of the merozoite surface antigen 1 of Plasmodium vivax reveals sequences conserved between different Plasmodium species. Proc Natl Acad Sci USA 88: 4030–4034.
Thomas AW, Trape JF, Rogier C, Goncalves A, Rosario VE, Narum DL, 1994. High prevalence of natural antibodies against Plasmodium falciparum 83-kilodalton apical membrane antigen (PF83/AMA-1) as detected by capture-enzyme-linked immunosorbent assay using full-length baculovirus recombinant PF83/AMA-1. Am J Trop Med Hyg 51: 730–740.
Barnwell JW, Galinski MR, 1995. Plasmodium vivax: a glimpse into the unique and shared biology of the merozoite. Ann Trop Med Parasitol 89: 113–120.
Barnwell JW, Galinski MR, DeSimone SG, Perler F, Ingravallo P, 1999. Plasmodium vivax, P. cynomolgi, and P. knowlesi: identification of homologue proteins associated with the surface of merozoites. Exp Parasitol 91: 238–249.
Galinski MR, Ingravallo P, Corredor-Medina C, Al-Khedery B, Povoa M, Barnwell JW, 2001. Plasmodium vivax merozoite surface proteins-3beta and-3gamma share structural similarities with P. vivax merozoite surface protein-3alpha and define a new gene family. Mol Biochem Parasitol 115: 41–53.
Galinski MR, Corredor-Medina C, Povoa M, Crosby J, Ingravallo P, Barnwell JW, 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol Biochem Parasitol 101: 131–147.
Chitnis CE, 2001. Molecular insights into receptors used by malaria parasites for erythrocyte invasion. Curr Opin Hematol 8: 85–91.
Tsuboi T, Kappe SH, al-Yaman F, Prickett MD, Alpers M, Adams JH, 1994. Natural variation within the principal adhesion domain of the Plasmodium vivax duffy binding protein. Infect Immun 62: 5581–5586.
Osier FHA, Fegan G, Polley SD, Murungi L, Verra F, Tetteh KKA, Lowe B, Mwangi T, Bull PC, Thomas AW, Cavanagh DR, McBride JS, Lanar DE, Mackinnon MJ, Conway DJ, Marsh K, 2008. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun 76: 2240–2248.
Crompton PD, Kayala MA, Traore B, Kayentao K, Ongoiba A, Weiss GE, Molina DM, Burk CR, Waisberg M, Jasinskas A, Tan X, Doumbo S, Doumtabe D, Kone Y, Narum DL, Liang X, Doumbo OK, Miller LH, Doolan DL, Baldi P, Felgner PL, Pierce SK, 2010. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc Natl Acad Sci USA 107: 6958–6963.
Davies DH, Liang X, Hernandez JE, Randall A, Hirst S, Mu Y, Romero KM, Nguyen TT, Kalantari-Dehaghi M, Crotty S, Baldi P, Villarreal LP, Felgner PL, 2005. Profiling the humoral immune response to infection by using proteome microarrays: high-throughput vaccine and diagnostic antigen discovery. Proc Natl Acad Sci USA 102: 547–552.
Doolan DL, Mu Y, Unal B, Sundaresh S, Hirst S, Valdez C, Randall A, Molina D, Liang X, Freilich DA, Oloo JA, Blair PL, Aguiar JC, Baldi P, Davies DH, Felgner PL, 2008. Profiling humoral immune responses to P. falciparum infection with protein microarrays. Proteomics 8: 4680–4694.
Davies DH, Molina DM, Wrammert J, Miller J, Hirst S, Mu Y, Pablo J, Unal B, Nakajima-Sasaki R, Liang X, Crotty S, Karem KL, Damon IK, Ahmed R, Villarreal L, Felgner PL, 2007. Proteome-wide analysis of the serological response to vaccinia and smallpox. Proteomics 7: 1678–1686.
Eyles JE, Unal B, Hartley MG, Newstead SL, Flick-Smith H, Prior JL, Oyston PC, Randall A, Mu Y, Hirst S, Molina DM, Davies DH, Milne T, Griffin KF, Baldi P, Titball RW, Felgner PL, 2007. Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7: 2172–2183.
Vigil A, Davies DH, Felgner PL, 2010. Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiol 5: 241–251.
Tarun AS, Peng X, Dumpit RF, Ogata Y, Silva-Rivera H, Camargo N, Daly TM, Bergman LW, Kappe SHI, 2008. A combined transcriptome and proteome survey of malaria parasite liver stages. Proc Natl Acad Sci USA 105: 305–310.
Hall N, Karras M, Raine JD, Carlton JM, Kooij TWA, Berriman M, Florens L, Janssen CS, Pain A, Christophides GK, James K, Rutherford K, Harris B, Harris D, Churcher C, Quail MA, Ormond D, Doggett J, Trueman HE, Mendoza J, Bidwell SL, Rajandream M-A, Carucci DJ, Yates JR, Kafatos FC, Janse CJ, Barrell B, Turner CMR, Waters AP, Sinden RE, 2005. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science 307: 82–86.
Florens L, Washburn MP, Raine JD, Anthony RM, Grainger M, Haynes JD, Moch JK, Muster N, Sacci JB, Tabb DL, Witney AA, Wolters D, Wu Y, Gardner MJ, Holder AA, Sinden RE, Yates JR, Carucci DJ, 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419: 520–526.
Liang X, Teng A, Braun DM, Felgner J, Wang Y, Baker SI, Chen S, Zelphati O, Felgner PL, 2002. Transcriptionally active polymerase chain reaction (TAP): high throughput gene expression using genome sequence data. J Biol Chem 277: 3593–3598.
Sundaresh S, Randall A, Unal B, Petersen JM, Belisle JT, Hartley MG, Duffield M, Titball RW, Davies DH, Felgner PL, Baldi P, 2007. From protein microarrays to diagnostic antigen discovery: a study of the pathogen Francisella tularensis. Bioinformatics 23: i508–i518.
Huber W, von Heydebreck A, Sültmann H, Poustka A, Vingron M, 2002. Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18: S96–S104.
Baldi P, Long AD, 2001. A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes. Bioinformatics 17: 509–519.
Bozdech Z, Mok S, Hu G, Imwong M, Jaidee A, Russell B, Ginsburg H, Nosten F, Day NPJ, White NJ, Carlton JM, Preiser PR, 2008. The transcriptome of Plasmodium vivax reveals divergence and diversity of transcriptional regulation in malaria parasites. Proc Natl Acad Sci USA 105: 16290–16295.
Wang R, Arevalo-Herrera M, Gardner MJ, Bonelo A, Carlton JM, Gomez A, Vera O, Soto L, Vergara J, Bidwell SL, Domingo A, Fraser CM, Herrera S, 2005. Immune responses to Plasmodium vivax pre-erythrocytic stage antigens in naturally exposed Duffy-negative humans: a potential model for identification of liver-stage antigens. Eur J Immunol 35: 1859–1868.
Herrera S, Bonelo A, Perlaza BL, Fernandez OL, Victoria L, Lenis AM, Soto L, Hurtado H, Acuna LM, Velez JD, Palacios R, Chen-Mok M, Corradin G, Arevalo-Herrera M, 2005. Safety and elicitation of humoral and cellular responses in Colombian malaria-naive volunteers by a Plasmodium vivax circumsporozoite protein-derived synthetic vaccine. Am J Trop Med Hyg 73: 3–9.
Drew DR, O'Donnell RA, Smith BJ, Crabb BS, 2004. A common cross-species function for the double epidermal growth factor-like modules of the highly divergent Plasmodium surface proteins MSP-1 and MSP-8. J Biol Chem 279: 20147–20153.
Felgner PL, Kayala MA, Vigil A, Burk C, Nakajima-Sasaki R, Pablo J, Molina DM, Hirst S, Chew JS, Wang D, Tan G, Duffield M, Yang R, Neel J, Chantratita N, Bancroft G, Lertmemongkolchai G, Davies DH, Baldi P, Peacock S, Titball RW, 2009. A Burkholderia pseudomallei protein microarray reveals serodiagnostic and cross-reactive antigens. Proc Natl Acad Sci USA 106: 13499–13504.
Trieu A, Kayala MA, Burk C, Molina DM, Freilich DA, Richie TL, Baldi P, Felgner PL, Doolan DL, 2011. Sterile protective immunity to malaria is associated with a panel of novel P. falciparum antigens. Mol Cell Proteomics 10: M111007948.
Beeson JG, Osier FHA, Engwerda CR, 2008. Recent insights into humoral and cellular immune responses against malaria. Trends Parasitol 24: 578–584.
Yamauchi LM, Coppi A, Snounou G, Sinnis P, 2007. Plasmodium sporozoites trickle out of the injection site. Cell Microbiol 9: 1215–1222.
Perez-Leal O, Sierra AY, Barrero CA, Moncada C, Martinez P, Cortes J, Lopez Y, Torres E, Salazar LM, Patarroyo MA, 2004. Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun 324: 1393–1399.
Chen J-H, Jung J-W, Wang Y, Ha K-S, Lu F, Lim CS, Takeo S, Tsuboi T, Han E-T, 2010. Immunoproteomics profiling of blood stage Plasmodium vivax infection by high-throughput screening assays. J Proteome Res 9: 6479–6489.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 3 | 3 | 3 |
Full Text Views | 383 | 102 | 1 |
PDF Downloads | 56 | 19 | 1 |
The development of pre-erythrocytic Plasmodium vivax vaccines is hindered by the lack of in vitro culture systems or experimental rodent models. To help bypass these roadblocks, we exploited the fact that naturally exposed Fy− individuals who lack the Duffy blood antigen (Fy) receptor are less likely to develop blood-stage infections; therefore, they preferentially develop immune responses to pre-erythrocytic–stage parasites, whereas Fy+ individuals experience both liver- and blood-stage infections and develop immune responses to both pre-erythrocytic and erythrocytic parasites. We screened 60 endemic sera from P. vivax-exposed Fy+ or Fy− donors against a protein microarray containing 91 P. vivax proteins with P. falciparum orthologs that were up-regulated in sporozoites. Antibodies against 10 P. vivax antigens were identified in sera from P. vivax-exposed individuals but not unexposed controls. This technology has promising implications in the discovery of potential vaccine candidates against P. vivax malaria.
Financial support: This work was supported by National Institutes of Health/National Institute of Allergy and Infectious Disease Grant R01 AI05759206, National Institutes of Health/National Institute of Allergy and Infectious Disease Small Business Innovation Research Grant AI075692, and National Institutes of Health/National Heart, Lung, and Blood Institute Grant R01 RHLO86488-04. This work was also supported by the Columbian Administrative Department of Science, Technology and Innovaton, known as Colciencias, contract 527-2009, code 2304-493-26209.
Authors' addresses: Douglas M. Molina and Xiaowu Liang, Antigen Discovery Inc., Irvine, CA, E-mails: dmolina@antigendiscovery.com and xliang@antigendiscovery.com. Olivia C. Finney, Malcolm J. Gardner, and Ruobing Wang, Seattle Biomedical Research Institute, Seattle, WA, E-mails: Olivia.finney@seattlebiomed.org, Malcolm.gardner@seattlebiomed.org, and ruobing.wang@seattlebiomed.org. Myriam Arevalo-Herrera and Socrates Herrera, Centro Internacional de Vacunas, Instituto de Inmunología, Universidad del Valle, Cali, Colombia, E-mails: marevalo@inmuno.org and sherrera@inmuno.org. Phillip L. Felgner Departments of Infectious Disease and Epidemiology, School of Medicine, University of California, Irvine, CA, E-mail: pfelgner@uci.edu.