New Ultrastructural Analysis of the Invasive Apparatus of the Plasmodium Ookinete

Kailash P. Patra Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, California

Search for other papers by Kailash P. Patra in
Current site
Google Scholar
PubMed
Close
and
Joseph M. Vinetz Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, California

Search for other papers by Joseph M. Vinetz in
Current site
Google Scholar
PubMed
Close
Restricted access

Invasion of the mosquito midgut by the Plasmodium ookinete determines the success of transmission of malaria parasites from humans to mosquitoes and therefore, is a potential target for molecular intervention. Here, we show higher-resolution ultrastructural details of developing and mature P. gallinaceum ookinetes than previously available. Improved fixation and processing methods yielded substantially improved transmission electron micrographs of ookinetes, particularly with regard to visualization of subcellular secretory and other organelles. These new images provide new insights into the synthesis and function of vital invasive machinery focused on the following features: apical membrane protrusions presumptively used for attachment and protein secretion, dark spherical bodies at the apical end of the mature ookinete, and the presence of a dense array of micronemes apposed to microtubules at the apical end of the ookinete involved in constitutive secretion. This work advances understanding of the molecular and cellular details of the Plasmodium ookinete and provides the basis of future, more detailed mechanistic experimentation on the biology of the Plasmodium ookinete.

Author Notes

* Address correspondence to Kailash P. Patra, Division of Infectious Diseases, Department of Medicine, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0741. E-mail: kpatra@ucsd.edu

Financial support: This project was supported by US Public Health Service Grants R21AI053781, 2R01R0145999, and 1U19AI089681 from the National Institutes of Health.

Authors' addresses: Kailash P. Patra and Joseph M. Vinetz, Division of Infectious Diseases, Department of Medicine, University of California at San Diego, La Jolla, CA, E-mails: kpatra@ucsd.edu and jvinetz@ucsd.edu.

  • 1.

    Alonso PL, Brown G, Arevalo-Herrera M, Binka F, Chitnis C, Collins F, Doumbo OK, Greenwood B, Hall BF, Levine MM, Mendis K, Newman RD, Plowe CV, Rodriguez MH, Sinden R, Slutsker L, Tanner M, 2011. A research agenda to underpin malaria eradication. PLoS Med 8: e1000406.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Greenwood B, Targett G, 2009. Do we still need a malaria vaccine? Parasite Immunol 31: 582–586.

  • 3.

    Li F, Patra KP, Vinetz JM, 2005. An anti-Chitinase malaria transmission-blocking single-chain antibody as an effector molecule for creating a Plasmodium falciparum-refractory mosquito. J Infect Dis 192: 878–887.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Carter R, 2001. Transmission blocking malaria vaccines. Vaccine 19: 2309–2314.

  • 5.

    Stowers A, Carter R, 2001. Current developments in malaria transmission-blocking vaccines. Expert Opin Biol Ther 1: 619–628.

  • 6.

    Hisaeda H, Yasutomo K, 2002. Development of malaria vaccines that block transmission of parasites by mosquito vectors. J Med Invest 49: 118–123.

  • 7.

    Arakawa T, Tsuboi T, Kishimoto A, Sattabongkot J, Suwanabun N, Rungruang T, Matsumoto Y, Tsuji N, Hisaeda H, Stowers A, Shimabukuro I, Sato Y, Torii M, 2003. Serum antibodies induced by intranasal immunization of mice with Plasmodium vivax Pvs25 co-administered with cholera toxin completely block parasite transmission to mosquitoes. Vaccine 21: 3143–3148.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Drakeley CJ, Eling W, Teelen K, Bousema JT, Sauerwein R, Greenwood BM, Targett GA, 2004. Parasite infectivity and immunity to Plasmodium falciparum gametocytes in Gambian children. Parasite Immunol 26: 159–165.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Vinetz JM, 2005. Plasmodium ookinete invasion of the mosquito midgut. Curr Top Microbiol Immunol 295: 357–382.

  • 10.

    Li F, Patra KP, Yowell CA, Dame JB, Chin K, Vinetz JM, 2010. Apical surface expression of aspartic protease Plasmepsin 4, a potential transmission-blocking target of the Plasmodium ookinete. J Biol Chem 285: 8076–8083.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Al-Olayan EM, Beetsma AL, Butcher GA, Sinden RE, Hurd H, 2002. Complete development of mosquito phases of the malaria parasite in vitro. Science 295: 677–679.

  • 12.

    Li F, Templeton T, Popov V, Comer J, Tsuboi T, Torii M, Vinetz J, 2004. Plasmodium ookinete-secreted proteins secreted through a common micronemal pathway are targets of blocking malaria transmission. J Biol Chem 279: 26635–26644.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bannister LH, Margos G, Hopkins JM, 2005. Making a home for Plasmodium post-genomics: ultrastructural organization of the blood stages. Sherman IW, ed. Molecular Approaches to Malaria. Washington, DC: ASM Press, 24–49.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Kaushal DC, Carter R, Rener J, Grotendorst CA, Miller LH, Howard RJ, 1983. Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes. J Immunol 131: 2557–2562.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Carter R, Kaushal DC, 1984. Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. III. Changes in zygote surface proteins during transformation to mature ookinete. Mol Biochem Parasitol 13: 235–241.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kaushal DC, Carter R, 1984. Characterization of antigens on mosquito midgut stages of Plasmodium gallinaceum. II. Comparison of surface antigens of male and female gametes and zygotes. Mol Biochem Parasitol 11: 145–156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Garnham PC, Bird RG, Baker JR, 1962. Electron microscope studies of motile stages of malaria parasites. III. The ookinetes of Haemamoeba and Plasmodium. Trans R Soc Trop Med Hyg 56: 116–120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Garnham PC, Bird RG, Baker JR, Desser SS, el-Nahal HM, 1969. Electron microscope studies on motile stages of malaria parasites. VI. The ookinete of Plasmodium berghei yoelii and its transformation into the early oocyst. Trans R Soc Trop Med Hyg 63: 187–194.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Sinden R, 1985. A cell biologist's view of host cell recognition and invasion by malarial parasites. Trans R Soc Trop Med Hyg 79: 598–605.

  • 20.

    Canning EU, Sinden RE, 1973. The organization of the ookinete and observations on nuclear division in oocysts of Plasmodium berghei. Parasitology 67: 29–40.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Sinden RE, Canning EU, 1972. The ultrastructure of Plasmodium berghei ookinetes in the midgut wall of Anopheles stephensi. Trans R Soc Trop Med Hyg 66: 6.

  • 22.

    Sinden RE, Hartley RH, 1985. Identification of the meiotic division of malarial parasites. J Protozool 32: 742–744.

  • 23.

    Sinden RE, Hartley RH, Winger L, 1985. The development of Plasmodium ookinetes in vitro: an ultrastructural study including a description of meiotic division. Parasitology 91: 227–244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Sinden RE, Winger L, Carter EH, Hartley RH, Tirawanchai N, Davies CS, Moore J, Sluiters JF, 1987. Ookinete antigens of Plasmodium berghei: a light and electron-microscope immunogold study of expression of the 21 kDa determinant recognized by a transmission-blocking antibody. Proc R Soc Lond B Biol Sci 230: 443–458.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Raibaud ALP, Paul REL, Mercati D, Brey PT, Sinden RE, Heuser JE, Dallai R, 2001. Cryofracture electron microscopy of the ookinete pellicle of Plasmodium gallinaceum reveals the existence of novel pores in teh alveolar membranes. J Struct Biol 135: 47–57.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Bounkeua V, Li F, Vinetz JM, 2010. In vitro generation of Plasmodium falciparum ookinetes. Am J Trop Med Hyg 83: 1187–1194.

  • 27.

    Torii M, Nakamura K, Sieber KP, Miller LH, Aikawa M, 1992. Penetration of the mosquito (Aedes aegypti) midgut wall by the ookinetes of Plasmodium gallinaceum. J Protozool 39: 449–454.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Meis JF, Ponnudurai T, 1987. Ultrastructural studies on the interaction of Plasmodium falciparum ookinetes with the midgut epithelium of Anopheles stephensi mosquitoes. Parasitol Res 73: 500–506.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Gallucci BB, 1974. Fine structure of Haemoproteus columbae Kruse during differentiation of the ookinete. J Protozool 21: 264–275.

  • 30.

    Perrone JB, Spielman A, 1988. Time and site of assembly of the peritrophic membrane of the mosquito Aedes aegypti. Cell Tissue Res 252: 473–478.

  • 31.

    Abraham EG, Jacobs-Lorena M, 2004. Mosquito midgut barriers to malaria parasite development. Insect Biochem Mol Biol 34: 667–671.

  • 32.

    Abraham EG, Islam S, Srinivasan P, Ghosh AK, Valenzuela JG, Ribeiro JM, Kafatos FC, Dimopoulos G, Jacobs-Lorena M, 2004. Analysis of the Plasmodium and Anopheles transcriptional repertoire during ookinete development and midgut invasion. J Biol Chem 279: 5573–5580.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Shen Z, Jacobs-Lorena M, 1998. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. J Biol Chem 273: 17665–17670.

  • 34.

    Sieber KP, Huber M, Kaslow D, Banks SM, Torii M, Aikawa M, Miller LH, 1991. The peritrophic membrane as a barrier: its penetration by Plasmodium gallinaceum and the effect of a monoclonal antibody to ookinetes. Exp Parasitol 72: 145–156.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Lemgruber L, Lupetti P, 2012. Crystalloid body, refractile body and virus-like particles in Apicomplexa: what is in there? Parasitology 139: 285–293.

  • 36.

    Saeed S, Carter V, Tremp AZ, Dessens JT, 2010. Plasmodium berghei crystalloids contain multiple LCCL proteins. Mol Biochem Parasitol 170: 49–53.

  • 37.

    Ghosh AK, Dinglasan RR, Ikadai H, Jacobs-Lorena M, 2010. An improved method for the in vitro differentiation of Plasmodium falciparum gametocytes into ookinetes. Malar J 9: 194.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Dinglasan RR, Alaganan A, Ghosh AK, Saito A, van Kuppevelt TH, Jacobs-Lorena M, 2007. Plasmodium falciparum ookinetes require mosquito midgut chondroitin sulfate proteoglycans for cell invasion. Proc Natl Acad Sci USA 104: 15882–15887.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    McClean CM, Alvarado HG, Neyra V, Llanos-Cuentas A, Vinetz JM, 2010. Optimized in vitro production of Plasmodium vivax ookinetes. Am J Trop Med Hyg 83: 1183–1186.

  • 40.

    Syafruddin, Arakawa R, Kamimura K, Kawamoto F, 1992. Development of Plasmodium berghei ookinetes to young oocysts in vitro. J Protozool 39: 333–338.

  • 41.

    Davies EE, 1974. Proceedings: ultrastructural studies of the ookinete of P. b. nigeriensis. Trans R Soc Trop Med Hyg 68: 5.

  • 42.

    Davies EE, 1974. Ultrastructural studies on the early ookinete stage of Plasmodium berghei nigeriensis and its transformatin into an oocyst. Ann Trop Med Parasitol 68: 283–290.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Carter R, Gwadz RW, Green I, 1979. Plasmodium gallinaceum: transmission-blocking immunity in chickens. II. The effect of antigamete antibodies in vitro and in vivo and their elaboration during infection. Exp Parasitol 47: 194–208.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Ghosh AK, Coppens I, Gardsvoll H, Ploug M, Jacobs-Lorena M, 2011. Plasmodium ookinetes coopt mammalian plasminogen to invade the mosquito midgut. Proc Natl Acad Sci USA 108: 17153–17158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Ghosh AK, Jacobs-Lorena M, 2011. Surface-expressed enolases of Plasmodium and other pathogens. Mem Inst Oswaldo Cruz 106 (Suppl 1): 85–90.

  • 46.

    Gass RF, 1979. The ultrastructure of cultured Plasmodium gallinaceum ookinetes: a comparison of intact stages with forms damaged by extracts from blood fed, susceptible Aedes aegypti. Acta Trop 36: 323–334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Raventos-Suarez C, Kaul DK, Macaluso F, Nagel RL, 1985. Membrane knobs are required for the microcirculatory obstruction induced by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci USA 82: 3829–3833.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Limviroj W, Yano K, Yuda M, Ando K, Chinzei Y, 2002. Immuno-electron microscopic observation of Plasmodium berghei CTRP localization in the midgut of the vector mosquito Anopheles stephensi. J Parasitol 88: 664–672.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Carter V, Nacer AM, Underhill A, Sinden RE, Hurd H, 2007. Minimum requirements for ookinete to oocyst transformation in Plasmodium. Int J Parasitol 37: 1221–1232.

  • 50.

    Chen PH, Chang S, Wu H, Shi YL, 1984. Scanning electron microscopic observations of the oocyst, sporoblast and sporozoite of Plasmodium yoelii yoelii. J Parasitol 70: 902–906.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Vernick KD, Fujioka H, Aikawa M, 1999. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector. Exp Parasitol 91: 362–366.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    de Venevelles P, Francois Chich J, Faigle W, Lombard B, Loew D, Pery P, Labbe M, 2006. Study of proteins associated with the Eimeria tenella refractile body by a proteomic approach. Int J Parasitol 36: 1399–1407.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Patra KP, Johnson JR, Cantin GT, Yates JR 3rd, Vinetz JM, 2008. Proteomic analysis of zygote and ookinete stages of the avian malaria parasite Plasmodium gallinaceum delineates the homologous proteomes of the lethal human malaria parasite Plasmodium falciparum. Proteomics 8: 2492–2499.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Lal K, Prieto JH, Bromley E, Sanderson SJ, Yates JR 3rd, Wastling JM, Tomley FM, Sinden RE, 2009. Characterisation of Plasmodium invasive organelles; an ookinete microneme proteome. Proteomics 9: 1142–1151.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Moskalyk LA, Oo MM, Jacobs-Lorena M, 1996. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti. Insect Mol Biol 5: 261–268.

  • 56.

    Templeton TJ, Kaslow DC, Fidock DA, 2000. Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol Microbiol 36: 1–9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Yuda M, Yano K, Tsuboi T, Torii M, Chinzei Y, 2001. von Willebrand factor a domain-related protein, a novel microneme protein of the malaria ookinete highly conserved throughout Plasmodium parasites. Mol Biochem Parasitol 116: 65–72.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Kaneko O, Templeton TJ, Iriko H, Tachibana M, Otsuki H, Takeo S, Sattabongkot J, Torii M, Tsuboi T, 2006. The Plasmodium vivax homolog of the ookinete adhesive micronemal protein, CTRP. Parasitol Int 55: 227–231.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Souza W, 2006. Secretory organelles of pathogenic protozoa. An Acad Bras Cienc 78: 271–291.

  • 60.

    Suwanabun N, Sattabongkot J, Tsuboi T, Torii M, Maneechai N, Rachapaew N, Yim-amnuaychok N, Punkitchar V, Coleman RE, 2001. Development of a method for the in vitro production of Plasmodium vivax ookinetes. J Parasitol 87: 928–930.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 673 566 211
Full Text Views 452 5 0
PDF Downloads 200 5 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save