Konno K, Feldmann FM, McDermott W, 1967. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95: 461– 469.
Mitchison DA, 1985. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 66: 219– 225.
Steele MA, Des Prez RM, 1988. The role of pyrazinamide in tuberculosis chemotherapy. Chest 94: 845– 850.
Butler WR, Kilburn JO, 1983. Susceptibility of Mycobacterium tuberculosis to pyrazinamide and its relationship to pyrazinamidase activity. Antimicrob Agents Chemother 24: 600– 601.
Miller MA, Thibert L, Desjardins F, Siddiqi SH, Dascal A, 1995. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide: comparison of Bactec method with pyrazinamidase assay. J Clin Microbiol 33: 2468– 2470.
Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, Zhang Y, 1997. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41: 540– 543.
Hirano K, Takahashi M, Kazumi Y, Fukasawa Y, Abe C, 1997. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis 78: 117– 122.
Cheng SJ, Thibert L, Sanchez T, Heifets L, Zhang Y, 2000. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob Agents Chemother 44: 528– 532.
Zimic M, Sheen P, Quiliano M, Gutierrez A, Gilman RH, 2010. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol 10: 346– 349.
Sheen P, Ferrer P, Gilman RH, Lopez-Llano J, Fuentes P, Valencia E, Zimic MJ, 2009. Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 89: 109– 113.
Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W, 2001. Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J 353: 453– 458.
Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH, 2001. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40: 14166– 14172.
Fyfe PK, Rao VA, Zemla A, Cameron S, Hunter WN, 2009. Specificity and mechanism of Acinetobacter baumanii nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. Angew Chem Int Ed Engl 48: 9176– 9179.
Petrella S, Gelus-Ziental N, Maudry A, Laurans C, Boudjelloul R, Sougakoff W, 2011. Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS One 6: e15785.
Quiliano M, Gutierrez AH, Gilman RH, Lopez C, Evangelista W, Sotelo J, Sheen P, Zimic M, 2011. Structure-activity relationship in mutated pyrazinamidases from Mycobacterium tuberculosis. Bioinformation 6: 335– 339.
Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V, 1999. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 43: 1761– 1763.
Sheen P, 2008. Molecular Diagnosis of Pyrazinamide Resistance and Molecular Understanding of the Pyrazinamidase Functionality in Mycobacterium tuberculosis. Baltimore, MD: Johns Hopkins University.
Zhang H, Deng JY, Bi LJ, Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE, 2008. Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. FEBS J 275: 753– 762.
Simonian M, Smith J, 1999. Short Protocols in Molecular Biology. New York, NY: John Wiley & Sons.
Shapir N, Pedersen C, Gil O, Strong L, Seffernick J, Sadowsky MJ, Wackett LP, 2006. TrzN from Arthrobacter aurescens TC1 is a zinc amidohydrolase. J Bacteriol 188: 5859– 5864.
Fersht A, 1999. The basic equations of enzyme kinetics. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New York, NY: W.H. Freeman and Company, 103– 131.
Michaelis L, Menten M, 1913. Kinetics of invertase action. Biochem Z 49: 333– 369.
Sreerama N, Venyaminov SY, Woody RW, 2000. Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem 287: 243– 251.
Sreerama N, Woody RW, 2000. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287: 252– 260.
Whitmore L, Wallace BA, 2004. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32: W668– W673.
Van Espen P, Nullens H, Adams F, 1977. A computer analysis of X-ray fluorescence spectra. Nuclear Instruments and Methods 142: 243– 250.
Van Espen P, Nullens H, Adams F, 1981. Calibration of tube excited energy-dispersive X-ray spectrometers with thin film standards and with fundamental constants. X-ray Spectrometry 10: 64– 68.
Bader M, 1980. A systematic approach to standard addition methods in instrumental analysis. J Chem Educ 57: 703– 706.
Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S, 2002. The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148: 2449– 2456.
Trivedi SS, Desai SG, 1987. Pyrazinamidase activity of Mycobacterium tuberculosis a test of sensitivity to pyrazinamide. Tubercle 68: 221– 224.
Wade MM, Zhang Y, 2004. Mechanisms of drug resistance in Mycobacterium tuberculosis. Front Biosci 9: 975– 994.
Boshoff HI, Mizrahi V, 1998. Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis. J Bacteriol 180: 5809– 5814.
Henderson JN, Zhang J, Evans BW, Redding K, 2003. Disassembly and degradation of photosystem I in an in vitro system are multievent, metal-dependent processes. J Biol Chem 278: 39978– 39986.
Pozo-Dengra J, Martinez-Gomez AI, Martinez-Rodriguez S, Clemente-Jimenez JM, Rodriguez-Vico F, Las Heras-Vazquez FJ, 2010. Evaluation of substrate promiscuity of an L-carbamoyl amino acid amidohydrolase from Geobacillus stearothermophilus CECT43. Biotechnol Prog 26: 954– 959.
Seiner DR, Hegde SS, Blanchard JS, 2010. Kinetics and inhibition of nicotinamidase from Mycobacterium tuberculosis. Biochemistry 49: 9613– 9619.
Zhang FL, Fu HW, Casey PJ, Bishop WR, 1996. Substitution of cadmium for zinc in farnesyl: protein transferase alters its substrate specificity. Biochemistry 35: 8166– 8171.
Kgayama T, Ohe T, 1990. Purification and properties of an aromatic amidase from Pseudomonas sp. GDI 211. Agric Biol Chem 53: 2565– 2571.
Barbalace K, 1995. Periodic Table of Elements 1995 – 2012. Available at: www.EnvironmentalChemistry.com. Accessed July 2010.
Vallet M, Faus J, Garcia E, Moratal J, 2003. Introducción a la Química Bioinorgánica: Editorial Síntesis. 332– 334.
Wackett L, Orme-Johnson W, Walsh C, 1989. Transition metal enzymes in bacterial metabolism. Beveridge T, Doyle R, eds. Metal Ions and Bacteria. New York, NY: John Wiley & Sons, 165– 206.
Smith I, Carlson B, 1981. Trace Metals in the Environment, Volume 6. Ann Arbor, MI: Ann Arbor Science Publising Inc.
Kanyo ZF, Scolnick LR, Ash DE, Christianson DW, 1996. Structure of a unique binuclear manganese cluster in arginase. Nature 383: 554– 557.
Seibert CM, Raushel FM, 2005. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44: 6383– 6391.
Castagnetto JM, Hennessy SW, Roberts VA, Getzoff ED, Tainer JA, Pique ME, 2002. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucleic Acids Res 30: 379– 382.
Sols A, Marco R, 1970. Concentrations of metabolites and binding sites. Implications in metabolic regulation. Curr Top Cell Regul 2: 227– 273.
Guerra DG, Vertommen D, Fothergill-Gilmore LA, Opperdoes FR, Michels PA, 2004. Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification. Eur J Biochem 271: 1798– 1810.
de Carvalho LP, Blanchard JS, 2006. Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis alpha-isopropylmalate synthase. Arch Biochem Biophys 451: 141– 148.
Patzer SI, Hantke K, 2000. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275: 24321– 24332.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 6 | 6 | 6 |
Full Text Views | 619 | 218 | 1 |
PDF Downloads | 139 | 47 | 1 |
Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn.
Financial support: This research was funded by National Institute of Allergy and Infectious Diseases, National Institutes of Health United States Award 1R01TW008669-01, Third World Academy of Science (TWAS) Grant 08-070RG/BIO/LA-UNESCO FR:3240204464, Programme for Research and Training in Tropical Diseases (TDR)-World Health Organization Reference 2009/53662-0, and Fundación Instituto Hipólito Unanue. P.S. and M.Z. were supported by Tropical Medicine Research Centers (TMRC) New Tools to Understand and Control Endemic Parasites Grant 1 P01 AI51976 and Global Research Training Grant 3 D43 TW006581.
Authors' addresses: Patricia Sheen, Patricia Ferrer, Gina Christiansen, Paola Moreno-Román, Andrés H. Gutiérrez, Jun Sotelo, Wilfredo Evangelista, Patricia Fuentes, Daniel Rueda, Myra Flores, and Mirko Zimic, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Perú, E-mails: patricia.sheen@upch.pe, ferrerp@gmail.com, ginachristiansen1@yahoo.com, paola.moreno@upch.pe, ahgn5@hotmail.com, jihusan@gmail.com, willyef@gmail.com, pfuentesbonilla@gmail.com, ldrueda.raez@gmail.com, meff_uni@yahoo.com, and mzimic@jhsph.edu. Robert H. Gilman, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, E-mail: rgilman@jhsph.edu. Paula Olivera and José Solis, Instituto Peruano de Energía Nuclear, Lima, Perú, E-mails: polivera@IPEN.GOB.PE and jsolis@uni.edu.pe. Alessandro Pesaresi and Doriano Lamba, Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy, E-mails: alessandro.pesaresi@ts.ic.cnr.it and doriano.lamba@ts.ic.cnr.it.