• 1.

    Konno K, Feldmann FM, McDermott W, 1967. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 95: 461469.

    • Search Google Scholar
    • Export Citation
  • 2.

    Mitchison DA, 1985. The action of antituberculosis drugs in short-course chemotherapy. Tubercle 66: 219225.

  • 3.

    Steele MA, Des Prez RM, 1988. The role of pyrazinamide in tuberculosis chemotherapy. Chest 94: 845850.

  • 4.

    Butler WR, Kilburn JO, 1983. Susceptibility of Mycobacterium tuberculosis to pyrazinamide and its relationship to pyrazinamidase activity. Antimicrob Agents Chemother 24: 600601.

    • Search Google Scholar
    • Export Citation
  • 5.

    Miller MA, Thibert L, Desjardins F, Siddiqi SH, Dascal A, 1995. Testing of susceptibility of Mycobacterium tuberculosis to pyrazinamide: comparison of Bactec method with pyrazinamidase assay. J Clin Microbiol 33: 24682470.

    • Search Google Scholar
    • Export Citation
  • 6.

    Scorpio A, Lindholm-Levy P, Heifets L, Gilman R, Siddiqi S, Cynamon M, Zhang Y, 1997. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 41: 540543.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hirano K, Takahashi M, Kazumi Y, Fukasawa Y, Abe C, 1997. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuber Lung Dis 78: 117122.

    • Search Google Scholar
    • Export Citation
  • 8.

    Cheng SJ, Thibert L, Sanchez T, Heifets L, Zhang Y, 2000. pncA mutations as a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis: spread of a monoresistant strain in Quebec, Canada. Antimicrob Agents Chemother 44: 528532.

    • Search Google Scholar
    • Export Citation
  • 9.

    Zimic M, Sheen P, Quiliano M, Gutierrez A, Gilman RH, 2010. Peruvian and globally reported amino acid substitutions on the Mycobacterium tuberculosis pyrazinamidase suggest a conserved pattern of mutations associated to pyrazinamide resistance. Infect Genet Evol 10: 346349.

    • Search Google Scholar
    • Export Citation
  • 10.

    Sheen P, Ferrer P, Gilman RH, Lopez-Llano J, Fuentes P, Valencia E, Zimic MJ, 2009. Effect of pyrazinamidase activity on pyrazinamide resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 89: 109113.

    • Search Google Scholar
    • Export Citation
  • 11.

    Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W, 2001. Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J 353: 453458.

    • Search Google Scholar
    • Export Citation
  • 12.

    Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH, 2001. Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40: 1416614172.

    • Search Google Scholar
    • Export Citation
  • 13.

    Fyfe PK, Rao VA, Zemla A, Cameron S, Hunter WN, 2009. Specificity and mechanism of Acinetobacter baumanii nicotinamidase: implications for activation of the front-line tuberculosis drug pyrazinamide. Angew Chem Int Ed Engl 48: 91769179.

    • Search Google Scholar
    • Export Citation
  • 14.

    Petrella S, Gelus-Ziental N, Maudry A, Laurans C, Boudjelloul R, Sougakoff W, 2011. Crystal structure of the pyrazinamidase of Mycobacterium tuberculosis: insights into natural and acquired resistance to pyrazinamide. PLoS One 6: e15785.

    • Search Google Scholar
    • Export Citation
  • 15.

    Quiliano M, Gutierrez AH, Gilman RH, Lopez C, Evangelista W, Sotelo J, Sheen P, Zimic M, 2011. Structure-activity relationship in mutated pyrazinamidases from Mycobacterium tuberculosis. Bioinformation 6: 335339.

    • Search Google Scholar
    • Export Citation
  • 16.

    Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V, 1999. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 43: 17611763.

    • Search Google Scholar
    • Export Citation
  • 17.

    Sheen P, 2008. Molecular Diagnosis of Pyrazinamide Resistance and Molecular Understanding of the Pyrazinamidase Functionality in Mycobacterium tuberculosis. Baltimore, MD: Johns Hopkins University.

    • Search Google Scholar
    • Export Citation
  • 18.

    Zhang H, Deng JY, Bi LJ, Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE, 2008. Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. FEBS J 275: 753762.

    • Search Google Scholar
    • Export Citation
  • 19.

    Simonian M, Smith J, 1999. Short Protocols in Molecular Biology. New York, NY: John Wiley & Sons.

  • 20.

    Shapir N, Pedersen C, Gil O, Strong L, Seffernick J, Sadowsky MJ, Wackett LP, 2006. TrzN from Arthrobacter aurescens TC1 is a zinc amidohydrolase. J Bacteriol 188: 58595864.

    • Search Google Scholar
    • Export Citation
  • 21.

    Fersht A, 1999. The basic equations of enzyme kinetics. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New York, NY: W.H. Freeman and Company, 103131.

    • Search Google Scholar
    • Export Citation
  • 22.

    Michaelis L, Menten M, 1913. Kinetics of invertase action. Biochem Z 49: 333369.

  • 23.

    Sreerama N, Venyaminov SY, Woody RW, 2000. Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem 287: 243251.

    • Search Google Scholar
    • Export Citation
  • 24.

    Sreerama N, Woody RW, 2000. Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem 287: 252260.

    • Search Google Scholar
    • Export Citation
  • 25.

    Whitmore L, Wallace BA, 2004. DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32: W668W673.

    • Search Google Scholar
    • Export Citation
  • 26.

    Van Espen P, Nullens H, Adams F, 1977. A computer analysis of X-ray fluorescence spectra. Nuclear Instruments and Methods 142: 243250.

    • Search Google Scholar
    • Export Citation
  • 27.

    Van Espen P, Nullens H, Adams F, 1981. Calibration of tube excited energy-dispersive X-ray spectrometers with thin film standards and with fundamental constants. X-ray Spectrometry 10: 6468.

    • Search Google Scholar
    • Export Citation
  • 28.

    Bader M, 1980. A systematic approach to standard addition methods in instrumental analysis. J Chem Educ 57: 703706.

  • 29.

    Lewin AC, Doughty PA, Flegg L, Moore GR, Spiro S, 2002. The ferric uptake regulator of Pseudomonas aeruginosa has no essential cysteine residues and does not contain a structural zinc ion. Microbiology 148: 24492456.

    • Search Google Scholar
    • Export Citation
  • 30.

    Trivedi SS, Desai SG, 1987. Pyrazinamidase activity of Mycobacterium tuberculosis a test of sensitivity to pyrazinamide. Tubercle 68: 221224.

    • Search Google Scholar
    • Export Citation
  • 31.

    Wade MM, Zhang Y, 2004. Mechanisms of drug resistance in Mycobacterium tuberculosis. Front Biosci 9: 975994.

  • 32.

    Boshoff HI, Mizrahi V, 1998. Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis. J Bacteriol 180: 58095814.

    • Search Google Scholar
    • Export Citation
  • 33.

    Henderson JN, Zhang J, Evans BW, Redding K, 2003. Disassembly and degradation of photosystem I in an in vitro system are multievent, metal-dependent processes. J Biol Chem 278: 3997839986.

    • Search Google Scholar
    • Export Citation
  • 34.

    Pozo-Dengra J, Martinez-Gomez AI, Martinez-Rodriguez S, Clemente-Jimenez JM, Rodriguez-Vico F, Las Heras-Vazquez FJ, 2010. Evaluation of substrate promiscuity of an L-carbamoyl amino acid amidohydrolase from Geobacillus stearothermophilus CECT43. Biotechnol Prog 26: 954959.

    • Search Google Scholar
    • Export Citation
  • 35.

    Seiner DR, Hegde SS, Blanchard JS, 2010. Kinetics and inhibition of nicotinamidase from Mycobacterium tuberculosis. Biochemistry 49: 96139619.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zhang FL, Fu HW, Casey PJ, Bishop WR, 1996. Substitution of cadmium for zinc in farnesyl: protein transferase alters its substrate specificity. Biochemistry 35: 81668171.

    • Search Google Scholar
    • Export Citation
  • 37.

    Kgayama T, Ohe T, 1990. Purification and properties of an aromatic amidase from Pseudomonas sp. GDI 211. Agric Biol Chem 53: 25652571.

    • Search Google Scholar
    • Export Citation
  • 38.

    Barbalace K, 1995. Periodic Table of Elements 1995 – 2012. Available at: www.EnvironmentalChemistry.com. Accessed July 2010.

  • 39.

    Vallet M, Faus J, Garcia E, Moratal J, 2003. Introducción a la Química Bioinorgánica: Editorial Síntesis. 332334.

  • 40.

    Wackett L, Orme-Johnson W, Walsh C, 1989. Transition metal enzymes in bacterial metabolism. Beveridge T, Doyle R, eds. Metal Ions and Bacteria. New York, NY: John Wiley & Sons, 165206.

    • Search Google Scholar
    • Export Citation
  • 41.

    Smith I, Carlson B, 1981. Trace Metals in the Environment, Volume 6. Ann Arbor, MI: Ann Arbor Science Publising Inc.

  • 42.

    Kanyo ZF, Scolnick LR, Ash DE, Christianson DW, 1996. Structure of a unique binuclear manganese cluster in arginase. Nature 383: 554557.

    • Search Google Scholar
    • Export Citation
  • 43.

    Seibert CM, Raushel FM, 2005. Structural and catalytic diversity within the amidohydrolase superfamily. Biochemistry 44: 63836391.

  • 44.

    Castagnetto JM, Hennessy SW, Roberts VA, Getzoff ED, Tainer JA, Pique ME, 2002. MDB: the Metalloprotein Database and Browser at The Scripps Research Institute. Nucleic Acids Res 30: 379382.

    • Search Google Scholar
    • Export Citation
  • 45.

    Sols A, Marco R, 1970. Concentrations of metabolites and binding sites. Implications in metabolic regulation. Curr Top Cell Regul 2: 227273.

    • Search Google Scholar
    • Export Citation
  • 46.

    Guerra DG, Vertommen D, Fothergill-Gilmore LA, Opperdoes FR, Michels PA, 2004. Characterization of the cofactor-independent phosphoglycerate mutase from Leishmania mexicana mexicana. Histidines that coordinate the two metal ions in the active site show different susceptibilities to irreversible chemical modification. Eur J Biochem 271: 17981810.

    • Search Google Scholar
    • Export Citation
  • 47.

    de Carvalho LP, Blanchard JS, 2006. Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis alpha-isopropylmalate synthase. Arch Biochem Biophys 451: 141148.

    • Search Google Scholar
    • Export Citation
  • 48.

    Patzer SI, Hantke K, 2000. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 275: 2432124332.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 6 6 6
Full Text Views 619 218 1
PDF Downloads 139 47 1
 
 
 
 
 
 
 
 
 
 
 

Role of Metal Ions on the Activity of Mycobacterium tuberculosis Pyrazinamidase

Patricia SheenLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Patricia Sheen in
Current site
Google Scholar
PubMed
Close
,
Patricia FerrerLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Patricia Ferrer in
Current site
Google Scholar
PubMed
Close
,
Robert H. GilmanLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Robert H. Gilman in
Current site
Google Scholar
PubMed
Close
,
Gina ChristiansenLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Gina Christiansen in
Current site
Google Scholar
PubMed
Close
,
Paola Moreno-RománLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Paola Moreno-Román in
Current site
Google Scholar
PubMed
Close
,
Andrés H. GutiérrezLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Andrés H. Gutiérrez in
Current site
Google Scholar
PubMed
Close
,
Jun SoteloLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Jun Sotelo in
Current site
Google Scholar
PubMed
Close
,
Wilfredo EvangelistaLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Wilfredo Evangelista in
Current site
Google Scholar
PubMed
Close
,
Patricia FuentesLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Patricia Fuentes in
Current site
Google Scholar
PubMed
Close
,
Daniel RuedaLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Daniel Rueda in
Current site
Google Scholar
PubMed
Close
,
Myra FloresLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Myra Flores in
Current site
Google Scholar
PubMed
Close
,
Paula OliveraLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Paula Olivera in
Current site
Google Scholar
PubMed
Close
,
José SolisLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by José Solis in
Current site
Google Scholar
PubMed
Close
,
Alessandro PesaresiLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Alessandro Pesaresi in
Current site
Google Scholar
PubMed
Close
,
Doriano LambaLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Doriano Lamba in
Current site
Google Scholar
PubMed
Close
, and
Mirko ZimicLaboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Perú; Department of International Health, School of Public Health, Johns Hopkins University, Baltimore, Maryland; Instituto Peruano de Energía Nuclear, Lima, Perú; Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy

Search for other papers by Mirko Zimic in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Pyrazinamidase of Mycobacterium tuberculosis catalyzes the conversion of pyrazinamide to the active molecule pyrazinoic acid. Reduction of pyrazinamidase activity results in a level of pyrazinamide resistance. Previous studies have suggested that pyrazinamidase has a metal-binding site and that a divalent metal cofactor is required for activity. To determine the effect of divalent metals on the pyrazinamidase, the recombinant wild-type pyrazinamidase corresponding to the H37Rv pyrazinamide-susceptible reference strain was expressed in Escherichia coli with and without a carboxy terminal. His-tagged pyrazinamidase was inactivated by metal depletion and reactivated by titration with divalent metals. Although Co2+, Mn2+, and Zn2+ restored pyrazinamidase activity, only Co2+ enhanced the enzymatic activity to levels higher than the wild-type pyrazinamidase. Cu2+, Fe2+, Fe3+, and Mg2+ did not restore the activity under the conditions tested. Various recombinant mutated pyrazinamidases with appropriate folding but different enzymatic activities showed a differential pattern of recovered activity. X-ray fluorescence and atomic absorbance spectroscopy showed that recombinant wild-type pyrazinamidase expressed in E. coli most likely contained Zn. In conclusion, this study suggests that M. tuberculosis pyrazinamidase is a metalloenzyme that is able to coordinate several ions, but in vivo, it is more likely to coordinate Zn2+. However, in vitro, the metal-depleted enzyme could be reactivated by several divalent metals with higher efficiency than Zn.

Author Notes

*Address correspondence to Mirko Zimic, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, San Martín de Porres, Lima 31, Perú. E-mail: mzimic@jhsph.edu

Financial support: This research was funded by National Institute of Allergy and Infectious Diseases, National Institutes of Health United States Award 1R01TW008669-01, Third World Academy of Science (TWAS) Grant 08-070RG/BIO/LA-UNESCO FR:3240204464, Programme for Research and Training in Tropical Diseases (TDR)-World Health Organization Reference 2009/53662-0, and Fundación Instituto Hipólito Unanue. P.S. and M.Z. were supported by Tropical Medicine Research Centers (TMRC) New Tools to Understand and Control Endemic Parasites Grant 1 P01 AI51976 and Global Research Training Grant 3 D43 TW006581.

Authors' addresses: Patricia Sheen, Patricia Ferrer, Gina Christiansen, Paola Moreno-Román, Andrés H. Gutiérrez, Jun Sotelo, Wilfredo Evangelista, Patricia Fuentes, Daniel Rueda, Myra Flores, and Mirko Zimic, Laboratorios de Investigación y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Perú, E-mails: patricia.sheen@upch.pe, ferrerp@gmail.com, ginachristiansen1@yahoo.com, paola.moreno@upch.pe, ahgn5@hotmail.com, jihusan@gmail.com, willyef@gmail.com, pfuentesbonilla@gmail.com, ldrueda.raez@gmail.com, meff_uni@yahoo.com, and mzimic@jhsph.edu. Robert H. Gilman, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, E-mail: rgilman@jhsph.edu. Paula Olivera and José Solis, Instituto Peruano de Energía Nuclear, Lima, Perú, E-mails: polivera@IPEN.GOB.PE and jsolis@uni.edu.pe. Alessandro Pesaresi and Doriano Lamba, Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Area Science Park—Basovizza, Trieste, Italy, E-mails: alessandro.pesaresi@ts.ic.cnr.it and doriano.lamba@ts.ic.cnr.it.

Save