An Insight into the Sialotranscriptome of Triatoma matogrossensis, a Kissing Bug Associated with Fogo Selvagem in South America

Teresa C. F. Assumpção Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Teresa C. F. Assumpção in
Current site
Google Scholar
PubMed
Close
,
Donald P. Eaton Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Donald P. Eaton in
Current site
Google Scholar
PubMed
Close
,
Van M. Pham Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Van M. Pham in
Current site
Google Scholar
PubMed
Close
,
Ivo M. B. Francischetti Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Ivo M. B. Francischetti in
Current site
Google Scholar
PubMed
Close
,
Valéria Aoki Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Valéria Aoki in
Current site
Google Scholar
PubMed
Close
,
Gunter Hans-Filho Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Gunter Hans-Filho in
Current site
Google Scholar
PubMed
Close
,
Evandro A. Rivitti Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Evandro A. Rivitti in
Current site
Google Scholar
PubMed
Close
,
Jesus G. Valenzuela Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Jesus G. Valenzuela in
Current site
Google Scholar
PubMed
Close
,
Luis A. Diaz Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by Luis A. Diaz in
Current site
Google Scholar
PubMed
Close
, and
José M. C. Ribeiro Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland; Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Dermatology, Universidade de São Paulo, Brazil; Universidade Federal de Mato Grosso do Sul, Brazil; Wildlife Conservation Society of Brazil, Campo Grande, MS, Brazil

Search for other papers by José M. C. Ribeiro in
Current site
Google Scholar
PubMed
Close
Restricted access

Triatoma matogrossensis is a Hemiptera that belongs to the oliveirai complex, a vector of Chagas' disease that feeds on vertebrate blood in all life stages. Hematophagous insects' salivary glands (SGs) produce potent pharmacologic compounds that counteract host hemostasis, including anticlotting, antiplatelet, and vasodilatory molecules. Exposure to T. matogrossensis was also found to be a risk factor associated with the endemic form of the autoimmune skin disease pemphigus foliaceus, which is described in the same regions where Chagas' disease is observed in Brazil. To obtain a further insight into the salivary biochemical and pharmacologic diversity of this kissing bug and to identify possible allergens that might be associated with this autoimmune disease, a cDNA library from its SGs was randomly sequenced. We present the analysis of a set of 2,230 (SG) cDNA sequences, 1,182 of which coded for proteins of a putative secretory nature.

Author Notes

*Address correspondence to José M. C. Ribeiro, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 2E-32D, Rockville, MD 20892. E-mail: jribeiro@niaid.nih.gov

Financial support: This work was supported in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, and by extramural NIAID grants RO1-AR32599 and RO1-AR32081 to Luis A. Diaz.

Disclosure: Because TCFA, VMP, IMBF, JGV, and JMCR are government employees and this is a government work, the work is in the public domain in the United States. Notwithstanding any other agreements, the NIH reserves the right to provide the work to PubMedCentral for display and use by the public, and PubMedCentral may tag or modify the work consistent with its customary practices. You can establish rights outside of the United States subject to a government use license.

Authors' addresses: Teresa C. F. Assumpção, Van M.Pham, Ivo M. B. Francischetti, Jesus G. Valenzuela, and José M. C. Ribeiro, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, E-mails: assumpcaot@niaid.nih.gov, vpham@niaid.nih.gov, ifrancischetti@niaid.nih.gov, jvalenzuela@niaid.nih.gov, and jribeiro@niaid.nih.gov. Donald P. Eaton, Wildlife Conservation Society, Campo Grande, MS, Brazil, E-mail: ksadeaton@yahoo.com. Valéria Aoki and Evandro A. Rivitti, Department of Dermatology, Universidade de São Paulo, Brazil, E-mails: valeria.aoki@gmail.com and evandro.rivitti@gmail.com. Gunter Hans-Filho, Department of Dermatology, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil, E-mail: ghansfilho@hotmail.com. Luis A. Diaz, Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, E-mail: luis_diaz@med.unc.edu.

Reprint requests: José M. C. Ribeiro, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Room 2E-32D, Rockville, MD, E-mail: jribeiro@niaid.nih.gov.

  • 1.

    Carcavallo RU, Jurberg J, Lent H, Galvao C, Steindel M, Carvalho Pinto CJ, 2001. A new species of the oliveirai complex (new designation for matogrossensis complex) from the State of Rio Grande do Sul, Brazil. Mem Inst Oswaldo Cruz 96 : 7179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Noireau F, dos Santos SM, Gumiel M, Dujardin JP, dos Santos Soares M, Carcavallo RU, Galvao C, Jurberg J, 2002. Phylogenetic relationships within the oliveirai complex (Hemiptera:Reduviidae:Triatominae). Infect Genet Evol 2 : 1117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Neiva A, Pinto C, Lent H, 1939. Notas sobre triatomídeos do Rio Grande do Sul e descrição de uma nova espécie. Mem Inst Oswaldo Cruz 34 : 607610.

  • 4.

    Lent H, Wygodzinsky P, 1979. Revision of the Triatominae (Hemiptera:Reduviidae) and their significance as vectors of Chagas disease. Bull Am Mus Nat Hist 163 : 127520.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Carcavallo RU, Jurberg J, Rocha Dda S, Galvao C, Noireau F, Lent H, 2002. Triatoma vandae sp.n. of the oliveirai complex from the State of Mato Grosso, Brazil (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz 97 : 649654.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Carcavallo RU, Jurberg J, Lent H, Noireau F, Galvão C, 2000. Phylogeny of the Triatominae (Hemiptera: Reduviidae). Entomolgía y Vectores 7 : 199.

  • 7.

    Culton DA, Qian Y, Li N, Rubenstein D, Aoki V, Filhio GH, Rivitti EA, Diaz LA, 2008. Advances in pemphigus and its endemic pemphigus foliaceus (Fogo Selvagem) phenotype: a paradigm of human autoimmunity. J Autoimmun 31 : 311324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Stanley JR, Klaus-Kovtun V, Sampaio SA, 1986. Antigenic specificity of fogo selvagem autoantibodies is similar to North American pemphigus foliaceus and distinct from pemphigus vulgaris autoantibodies. J Invest Dermatol 87 : 197201.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Buxton RS, Cowin P, Franke WW, Garrod DR, Green KJ, King IA, Koch PJ, Magee AI, Rees DA, Stanley JR, Steinberg M, 1993. Nomenclature of the desmosomal cadherins. J Cell Biol 121 : 481483.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Rock B, Martins CR, Theofilopoulos AN, Balderas RS, Anhalt GJ, Labib RS, Futamura S, Rivitti EA, Diaz LA, 1989. The pathogenic effect of IgG4 autoantibodies in endemic pemphigus foliaceus (fogo selvagem). N Engl J Med 320 : 14631469.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Diaz LA, Sampaio SA, Rivitti EA, Martins CR, Cunha PR, Lombardi C, Almeida FA, Castro RM, Macca ML, Lavrado C, Filho GH, Borges PC, Chaul A, Minelli L, Empinotti JC, Friedman H, Campbell I, Labib RS, Anhalt FJ, 1989. Endemic pemphigus foliaceus (Fogo Selvagem): II. Current and historic epidemiologic studies. J Invest Dermatol 92 : 412.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Diaz LA, Arteaga LA, Hilario-Vargas J, Valenzuela JG, Li N, Warren S, Aoki V, Hans-Filho G, Eaton D, dos Santos V, Nutman TB, de Mayolo AA, Qaqish BF, Sampaio SA, Rivitti EA, 2004. Anti-desmoglein-1 antibodies in onchocerciasis, leishmaniasis and Chagas disease suggest a possible etiological link to Fogo selvagem. J Invest Dermatol 123 : 10451051.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Aoki V, Millikan RC, Rivitti EA, Hans-Filho G, Eaton DP, Warren SJ, Li N, Hilario-Vargas J, Hoffmann RG, Diaz LA, 2004. Environmental risk factors in endemic pemphigus foliaceus (fogo selvagem). J Investig Dermatol Symp Proc 9 : 3440.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Eaton DP, Diaz LA, Hans-Filho G, Santos VD, Aoki V, Friedman H, Rivitti EA, Sampaio SA, Gottlieb MS, Giudice GJ, Lopez A, Cupp EW, 1998. Comparison of black fly species (Diptera: Simuliidae) on an Amerindian reservation with a high prevalence of fogo selvagem to neighboring disease-free sites in the State of Mato Grosso do Sul, Brazil. The Cooperative Group on Fogo Selvagem Research. J Med Entomol 35 : 120131.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lombardi C, Borges PC, Chaul A, Sampaio SA, Rivitti EA, Friedman H, Martins CR, Sanches Junior JA, Cunha PR, Hoffmann RG, Diaz LA & Cooperative Group for Fogo Selvagem Research 1992. Environmental risk factors in endemic pemphigus foliaceus (Fogo selvagem). J Invest Dermatol 98 : 847850.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ribeiro JM, Valenzuela JG, Pham VM, Kleeman L, Barbian KD, Favreau AJ, Eaton DP, Aoki V, Hans-Filho G, Rivitti EA, Diaz LA, 2010. An insight into the sialotranscriptome of Simulium nigrimanum, a black fly associated with fogo selvagem in South America. Am J Trop Med Hyg 82 : 10601075.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hans-Filho G, dos Santos V, Katayama JH, Aoki V, Rivitti EA, Sampaio SA, Friedman H, Moraes JR, Moraes ME, Eaton DP, Lopez AL, Hoffman RG, Fairley JA, Giudice GJ, Diaz LA, 1996. An active focus of high prevalence of fogo selvagem on an Amerindian reservation in Brazil. Cooperative Group on Fogo Selvagem Research. J Invest Dermatol 107 : 6875.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Ribeiro JM, Andersen J, Silva-Neto MA, Pham VM, Garfield MK, Valenzuela JG, 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochem Mol Biol 34 : 6179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Santos A, Ribeiro JM, Lehane MJ, Gontijo NF, Veloso AB, Sant'Anna MR, Nascimento Araujo R, Grisard EC, Pereira MH, 2007. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). Insect Biochem Mol Biol 37 : 702712.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Assumpção TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM, 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem Mol Biol 38 : 213232.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Kato H, Jochim RC, Gomez EA, Sakoda R, Iwata H, Valenzuela JG, Hashiguchi Y, 2010. A repertoire of the dominant transcripts from the salivary glands of the blood-sucking bug, Triatoma dimidiata, a vector of Chagas disease. Infect Genet Evol 10 : 184191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Assumpcao TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araujo CN, Pham VM, Queiroz RM, de Castro CN, Ricart CA, Santana JM, Ribeiro JM, 2011. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 10 : 669679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Ribeiro JM, 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis 4 : 143152.

  • 24.

    Francischetti IM, Valenzuela JG, Pham VM, Garfield MK, Ribeiro JM, 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J Exp Biol 205 : 24292451.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Valenzuela JG, Pham VM, Garfield MK, Francischetti IM, Ribeiro JM, 2002. Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem Mol Biol 32 : 11011122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Mather TN, Ribeiro JM, 2002. Exploring the sialome of the tick Ixodes scapularis. J Exp Biol 205 : 28432864.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Valenzuela JG, Francischetti IM, Pham VM, Garfield MK, Ribeiro JM, 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem Mol Biol 33 : 717732.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Altschul SF, Gish W, 1996. Local alignment statistics. Methods Enzymol 266 : 460480.

  • 29.

    Huang X, Madan A, 1999. CAP3: a DNA sequence assembly program. Genome Res 9 : 868877.

  • 30.

    Thompson JD, Higgins DG, Gibson TJ, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 : 46734680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kumar S, Tamura K, Nei M, 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5 : 150163.

  • 32.

    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25 : 33893402.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, 2000. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25 : 2529.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Schaffer AA, Aravind L, Madden TL, Shavirin S, Spouge JL, Wolf YI, Koonin EV, Altschul SF, 2001. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res 29 : 29943005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer EL, 2000. The Pfam protein families database. Nucleic Acids Res 28 : 263266.

  • 36.

    Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P, 2002. Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30 : 242244.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA, 2003. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4 : 41.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH, 2002. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30 : 281283.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Nielsen H, Engelbrecht J, Brunak S, von Heijne G, 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10 : 16.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL, Brunak S, 1998. NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15 : 115130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 : 48764882.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Ribeiro JM, Charlab R, Pham VM, Garfield M, Valenzuela JG, 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem Mol Biol 34 : 543563.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Calvo E, Dao A, Pham VM, Ribeiro JM, 2007. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem Mol Biol 37 : 164175.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Amino R, Tanaka AS, Schenkman S, 2001. Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease Triatoma infestans (Hemiptera: Reduviidae). Insect Biochem Mol Biol 31 : 465472.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Meiser CK, Piechura H, Meyer HE, Warscheid B, Schaub GA, Balczun C, 2010. A salivary serine protease of the haematophagous reduviid Panstrongylus megistus: sequence characterization, expression pattern and characterization of proteolytic activity. Insect Mol Biol 19 : 409421.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Xu X, Yang H, Ma D, Wu J, Wang Y, Song Y, Wang X, Lu Y, Yang J, Lai R, 2008. Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands. Mol Cell Proteomics 7 : 582590.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Söderhäll K, Cerenius L, 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr Opin Immunol 10 : 2328.

  • 48.

    Francischetti IM, Sá-Nunes A, Mans BJ, Santos IM, Ribeiro JM, 2009. The role of saliva in tick feeding. Front Biosci 14 : 20512088.

  • 49.

    Carolan JC, Fitzroy CI, Ashton PD, Douglas AE, Wilkinson TL, 2009. The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterized by mass spectrometry. Proteomics 9 : 24572467.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Gutiérrez JM, Rucavado A, 2000. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie 82 : 841850.

  • 51.

    Undheim EA, King GF, 2011. On the venom system of centipedes (Chilopoda), a neglected group of venomous animals. Toxicon 57 : 512524.

  • 52.

    Francischetti IM, Mather TN, Ribeiro JM, 2003. Cloning of a salivary gland metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities in the saliva of the Lyme disease tick vector Ixodes scapularis. Biochem Biophys Res Commun 305 : 869875.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Francischetti IM, Calvo E, Andersen JF, Pham VM, Favreau AJ, Barbian KD, Romero A, Valenzuela JG, Ribeiro JM, 2010. Insight into the Sialome of the Bed Bug, Cimex lectularius. J Proteome Res 9 : 38203831.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Assumpção TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araújo CN, Pham VM, Queiroz RM, de Castro CN, Ricart CA, Santana JM, Ribeiro JM, 2011. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. J Proteome Res 10 : 669679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Erneux C, Govaerts C, Communi D, Pesesse X, 1998. The diversity and possible functions of the inositol polyphosphate 5-phosphatases. Biochim Biophys Acta 1436 : 185199.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Zhang X, Majerus PW, 1998. Phosphatidylinositol signalling reactions. Semin Cell Dev Biol 9 : 153160.

  • 57.

    Mitchell CA, Gurung R, Kong AM, Dyson JM, Tan A, Ooms LM, 2002. Inositol polyphosphate 5-phosphatases: lipid phosphatases with flair. IUBMB Life 53 : 2536.

  • 58.

    Ribeiro JM, Arca B, 2009. From sialomes to the sialoverse: an insight into the salivary potion of blood feeding insects. Adv Insect Physiol 37 : 59118.

  • 59.

    Faudry E, Lozzi SP, Santana JM, D'Souza-Ault M, Kieffer S, Felix CR, Ricart CA, Sousa MV, Vernet T, Teixeira AR, 2004. Triatoma infestans apyrases belong to the 5′-nucleotidase family. J Biol Chem 279 : 1960719613.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Ribeiro JM, Francischetti IM, 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu Rev Entomol 48 : 7388.

  • 61.

    Sarkis JJ, Guimaraes JA, Ribeiro JM, 1986. Salivary apyrase of Rhodnius prolixus. Kinetics and purification. Biochem J 233 : 885891.

  • 62.

    Dvir H, Silman I, Harel M, Rosenberry TL, Sussman JL, 2010. Acetylcholinesterase: from 3D structure to function. Chem Biol Interact 187 : 1022.

  • 63.

    Assumpcao TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM, Ribeiro JM, 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas' disease. Insect Biochem Mol Biol 38 : 213232.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Ribeiro JM, Andersen J, Silva-Neto MA, Pham VM, Garfield MK, Valenzuela JG, 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochem Mol Biol 34 : 6179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Flower DR, North AC, Sansom CE, 2000. The lipocalin protein family: structural and sequence overview. Biochim Biophys Acta 1482 : 924.

  • 66.

    Flower DR, 1995. Multiple molecular recognition properties of the lipocalin protein family. J Mol Recognit 8 : 185195.

  • 67.

    Flower DR, 1996. The lipocalin protein family: structure and function. Biochem J 318 : 114.

  • 68.

    Andersen JF, Gudderra NP, Francischetti IM, Ribeiro JM, 2005. The role of salivary lipocalins in blood feeding by Rhodnius prolixus. Arch Insect Biochem Physiol 58 : 97105.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Noeske-Jungblut C, Kratzschmar J, Haendler B, Alagon A, Possani L, Verhallen P, Donner P, Schleuning WD, 1994. An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis. J Biol Chem 269 : 50505053.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Noeske-Jungblut C, Haendler B, Donner P, Alagon A, Possani L, Schleuning WD, 1995. Triabin, a highly potent exosite inhibitor of thrombin. J Biol Chem 270 : 2862928634.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Assumpção TC, Alvarenga PH, Ribeiro JM, Andersen JF, Francischetti IM, 2010. Dipetalodipin, a novel multifunctional salivary lipocalin that inhibits platelet aggregation, vasoconstriction, and angiogenesis through unique binding specificity for TXA2, PGF2alpha, and 15(S)-HETE. J Biol Chem 285 : 3900139012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Paesen GC, Adams PL, Nuttall PA, Stuart DL, 2000. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim Biophys Acta 1482 : 92101.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Schlott B, Wohnert J, Icke C, Hartmann M, Ramachandran R, Guhrs KH, Glusa E, Flemming J, Gorlach M, Grosse F, Ohlenschlager O, 2002. Interaction of Kazal-type inhibitor domains with serine proteinases: biochemical and structural studies. J Mol Biol 318 : 533546.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Stubbs MT, Morenweiser R, Sturzebecher J, Bauer M, Bode W, Huber R, Piechottka GP, Matschiner G, Sommerhoff CP, Fritz H, Auerswald EA, 1997. The three-dimensional structure of recombinant leech-derived tryptase inhibitor in complex with trypsin. Implications for the structure of human mast cell tryptase and its inhibition. J Biol Chem 272 : 1993119937.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    van de Locht A, Lamba D, Bauer M, Huber R, Friedrich T, Kroger B, Hoffken W, Bode W, 1995. Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin. EMBO J 14 : 51495157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Lovato DV, Nicolau de Campos IT, Amino R, Tanaka AS, 2006. The full-length cDNA of anticoagulant protein infestin revealed a novel releasable Kazal domain, a neutrophil elastase inhibitor lacking anticoagulant activity. Biochimie 88 : 673681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Amino R, Martins RM, Procopio J, Hirata IY, Juliano MA, Schenkman S, 2002.