Effects of Temperature on Emergence and Seasonality of West Nile Virus in California

David M. Hartley Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Imaging Science and Information Systems Center and Departments of Microbiology and Immunology and Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Vectorborne Diseases, University of California, Davis, California; Center for Disease Dynamics, Economics and Policy, Resources for the Future, Washington, District of Columbia; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia

Search for other papers by David M. Hartley in
Current site
Google Scholar
PubMed
Close
,
Christopher M. Barker Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Imaging Science and Information Systems Center and Departments of Microbiology and Immunology and Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Vectorborne Diseases, University of California, Davis, California; Center for Disease Dynamics, Economics and Policy, Resources for the Future, Washington, District of Columbia; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia

Search for other papers by Christopher M. Barker in
Current site
Google Scholar
PubMed
Close
,
Arnaud Le Menach Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Imaging Science and Information Systems Center and Departments of Microbiology and Immunology and Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Vectorborne Diseases, University of California, Davis, California; Center for Disease Dynamics, Economics and Policy, Resources for the Future, Washington, District of Columbia; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia

Search for other papers by Arnaud Le Menach in
Current site
Google Scholar
PubMed
Close
,
Tianchan Niu Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Imaging Science and Information Systems Center and Departments of Microbiology and Immunology and Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Vectorborne Diseases, University of California, Davis, California; Center for Disease Dynamics, Economics and Policy, Resources for the Future, Washington, District of Columbia; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia

Search for other papers by Tianchan Niu in
Current site
Google Scholar
PubMed
Close
,
Holly D. Gaff Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Imaging Science and Information Systems Center and Departments of Microbiology and Immunology and Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Vectorborne Diseases, University of California, Davis, California; Center for Disease Dynamics, Economics and Policy, Resources for the Future, Washington, District of Columbia; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia

Search for other papers by Holly D. Gaff in
Current site
Google Scholar
PubMed
Close
, and
William K. Reisen Fogarty International Center, National Institutes of Health, Bethesda, Maryland; Imaging Science and Information Systems Center and Departments of Microbiology and Immunology and Radiology, Georgetown University Medical Center, Washington, District of Columbia; Center for Vectorborne Diseases, University of California, Davis, California; Center for Disease Dynamics, Economics and Policy, Resources for the Future, Washington, District of Columbia; Department of Biological Sciences, Old Dominion University, Norfolk, Virginia

Search for other papers by William K. Reisen in
Current site
Google Scholar
PubMed
Close
Restricted access

Temperature has played a critical role in the spatiotemporal dynamics of West Nile virus transmission throughout California from its introduction in 2003 through establishment by 2009. We compared two novel mechanistic measures of transmission risk, the temperature-dependent ratio of virus extrinsic incubation period to the mosquito gonotrophic period (BT), and the fundamental reproductive ratio (R0) based on a mathematical model, to analyze spatiotemporal patterns of receptivity to viral amplification. Maps of BT and R0 were created at 20-km scale and compared throughout California to seroconversions in sentinel chicken flocks at half-month intervals. Overall, estimates of BT and R0 agreed with intensity of transmission measured by the frequency of sentinel chicken seroconversions. Mechanistic measures such as these are important for understanding how temperature affects the spatiotemporal dynamics of West Nile virus transmission and for delineating risk estimates useful to inform vector control agency intervention decisions and communicate outbreak potential.

Author Notes

*Address correspondence to David M. Hartley, Georgetown University Medical Center, 2115 Wisconsin Avenue NW, Suite 603, Washington, DC 20057. E-mail: Hartley@isis.georgetown.edu

Financial support: This study was supported by the Research and Policy for Infectious Disease Dynamics program of the Science and Technology Directorate, Department of Homeland Security and the Fogarty International Center, National Institutes of Health. Christopher M. Barker and William K. Reisen are supported, in part, by Centers for Disease Control and Prevention grant U01EH000418 to study the impacts of climate change on mosquitoborne virus transmission, and National Institutes of Allergy and Infectious Diseases, National Institues of Health grant R01 AI55607 to model amplification of WNV.

Authors' addresses: David M. Hartley and Tianchan Niu, Georgetown University Medical Center, Washington DC, E-mails: Hartley@isis.georgetown.edu and Niu@isis.georgetown.edu. Christopher M. Barker and William K. Reisen, Center for Vectorborne Diseases, University of California, Davis, CA, E-mails: cmbarker@ucdavis.edu and wkreisen@ucdavis.edu. Arnaud Le Menach, Resources for the Future, Center for Disease Dynamics, Economics and Policy, Washington, DC, E-mail: arnaudlemenach@gmail.com. Holly D. Gaff, Department of Biological Sciences, Old Dominion University, Norfolk, VA, E-mail: hgaff@odu.edu.

  • 1.

    Lanciotti RS, Roehrig JT, Deubel V, Smith J, Parker M, Steele K, Crise B, Volpe KE, Crabtree MB, Scherret JH, Hall RA, Mackenzie JS, Cropp CB, Panigrahy B, Ostlund E, Schmitt B, Malkinson M, Banet C, Weissman J, Komar N, Savage HM, Stone W, McNamara T, Gubler DJ, 1999. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States. Science 286: 23332337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Reisen W, Lothrop H, Chiles R, Madon M, Cossen C, Woods L, Husted S, Kramer V, Edman J, 2004. West Nile virus in California. Emerg Infect Dis 10: 13691378.

  • 3.

    Hom A, Marcus L, Kramer VL, Cahoon BE, Glaser C, Cossen C, Baylis E, Jean C, Tu EH, Eldridge BF, Carney R, Padgett K, Sun B, Reisen WK, Woods L, Husted S, 2005. Surveillance for mosquito-borne encephalitis virus activity and human disease, including West Nile virus in California, 2004. Proc Mosq Vector Control Assoc Calif 73: 6677.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Wheeler SS, Barker CM, Fang Y, Armijos MV, Carroll BD, Husted S, Johnson WO, Reisen WK, 2009. Differential impacts of West Nile virus on California birds. Condor 111: 120.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    California Department of Public Health, 2010. California West Nile Virus. Available at: http://westnile.ca.gov. Accessed March 24, 2011.

  • 6.

    Reisen WK, Fang Y, Martinez VM, 2006. Effects of temperature on the transmission of West Nile virus by Culex tarsalis (Diptera: Culicidae). J Med Entomol 43: 309317.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Liu A, Lee V, Galusha D, Slade MD, Diuk-Wasser M, Andreadis T, Scotch M, Rabinowitz PM, 2009. Risk factors for human infection with West Nile virus in Connecticut: a multi-year analysis. Int J Hlth Geograph 8: 67.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ruiz MO, Chaves LF, Hamer GL, Sun T, Brown WM, Walker ED, Haramis L, Goldberg TL, Kitron UD, 2010. Local impact of temperature and precipitation on West Nile virus infection in Culex species mosquitoes in northeast Illinois, USA. Parasites and Vectors 19: 19.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Soverow JE, Wellenius GA, Fisman DN, Mittleman MA, 2009. Infectious disease in a warming world: how weather influenced West Nile virus in the United States (2001–2005). Environ Health Perspect 117: 10491052.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Reisen WK, Milby MM, Presser SB, Hardy JL, 1992. Ecology of mosquitoes and St. Louis encephalitis virus in the Los Angeles Basin of California, 1987–1990. J Med Entomol 29: 582598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Kilpatrick AM, Meola MA, Moudy RM, Kramer LD, 2008. Temperature, viral genetics, and the transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Pathogens 27 e1000092.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Bowman C, Gumel AB, van den Driessche P, Wu J, Zhu H, 2005. A mathematical model for assessing control strategies against West Nile virus. Bull Math Biol 67: 11071133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Blayneh KW, Gumel AB, Lenhart S, Clayton T, 2010. Backward bifurcation and optimal control in transmission dynamics of West Nile virus. Bull Math Biol 72: 10061028.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Liu RS, Shuai JP, Wu JH, Zhu HP, 2006. Modeling spatial spread of West Nile virus and impact of directional dispersal of birds. Math Biosci Eng 3: 145160.

  • 15.

    Cruz-Pacheco G, Esteva L, Montano-Hirose JA, Vargas C, 2005. Modeling the dynamics of West Nile virus. Bull Math Biol 67: 11571172.

  • 16.

    Hartemink NA, Davis SA, Reiter P, Hubalek Z, Heesterbeek JAP, 2007. Importance of bird-to-bird transmission for the establishment of West Nile virus. Vector Borne Zoonotic Dis 7: 575584.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Jiang JF, Qiu ZP, 2009. The complete classification for dynamics in a nine-dimensional West Nile virus model. SIAM J Appl Math 69: 12051227.

  • 18.

    Jiang JF, Qiu ZP, Wu JH, Zhu HP, 2009. Threshold conditions for West Nile virus outbreaks. Bull Math Biol 71: 627647.

  • 19.

    Kenkre VM, Parmenter RR, Peixoto LD, Sadasiv L, 2005. A theoretical framework for the analysis of the West Nile virus epidemic. Math Comput Model 42: 313324.

  • 20.

    Lewis M, Renclawowicz J, Van den Driessche P, 2006. Traveling waves and spread rates for a West Nile virus model. Bull Math Biol 68: 323.

  • 21.

    Lewis MA, Renclawowicz J, van den Driessche P, Wonham M, 2006. A comparison of continuous and discrete-time West Nile virus models. Bull Math Biol 68: 491509.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lord CC, Day JF, 2001. Simulation studies of St. Louis encephalitis and West Nile viruses: the impact of bird mortality. Vector Borne Zoonotic Dis 1: 317329.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Rappole JH, Compton BW, Leimgruber P, Robertson J, King DI, Renner SC, 2006. Modeling movement of West Nile virus in the western hemisphere. Vector Borne Zoonotic Dis 6: 128139.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Thomas DM, Urena B, 2001. A model describing the evolution of West Nile-like encephalitis in New York City. Math Comput Model 34: 771781.

  • 25.

    Wan H, Zhu HP, 2010. The backward bifurcation in compartmental models for West Nile virus. Math Biosci 227: 2028.

  • 26.

    Wonham MJ, Camino-Beck T, Lewis MA, 2004. An epidemiological model for West Nile virus: invasion analysis and control applications. Proc R Soc Lond B Biol Sci 271: 501507.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Wonham MJ, Lewis MA, 2008. A comparative analysis of models for West Nile virus. Brauer F, van den Driessche P, Wu J, eds. Mathematical Epidemiology. Berlin: Springer-Verlag, 365390.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Wonham MJ, Lewis MA, Renclawowicz J, Van den Driessche P, 2006. Transmission assumptions generate conflicting predictions in host-vector disease models: a case study in West Nile virus. Ecol Lett 9: 706725.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    California Department of Public Health, 2011. Mosquito and Vector Control Association of California, University of California. California Mosquito-Borne Virus Surveillance and Response Plan. Available at: http://westnile.ca.gov/downloads.php?download_id=820&filename=2008_CA_Mosq_Surv.pdf. Accessed March 3, 2012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Barker CM, Kramer VL, Reisen WK, 2010. Decision Support System for Mosquito and Arbovirus Control in California. Earthzine: an IEEE Publication. Available at: http://www.earthzine.org/2010/09/24/decision-support-system-for-mosquito-and-arbovirus-control-in-california/. Accessed January 14, 2012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nemani R, Votava P, Michaelis A, White M, Melton F, Milesi C, Pierce L, Golden K, Hashimoto H, Ichii K, Johnson L, Jolly M, Myneni R, Tague C, Coughlan J, Running S, 2007. Remote sensing methodologies for ecosystem management. Aswathanarayana U, ed. Food and Water Security. Oxford, UK: Taylor & Francis, 119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Newhouse VF, Chamberlain RW, Johnston JG Jr, Sudia WD, 1966. Use of dry ice to increase mosquito catches of the CDC miniature light trap. Mosq News 26: 3035.

  • 33.

    Reisen WK, Presser SB, Lin J, Enge B, Hardy JL, Emmons RW, 1994. Viremia and serological responses in adult chickens infected with western equine encephalomyelitis and St. Louis encephalitis viruses. J Am Mosq Control Assoc 10: 549555.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Patiris PJ, Oceguera LF 3rd, Peck GW, Chiles RE, Reisen WK, Hanson CV, 2008. Serologic diagnosis of West Nile and St. Louis encephalitis virus infections in domestic chickens. Am J Trop Med Hyg 78: 434441.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Development Core Team R, 2009. R: A Language and Environment for Statistical Computing. Vienna, Austria: Foundation for Statistical Computing.

  • 36.

    Komar N, Langevin S, Hinten S, Nemeth N, Edwards E, Hettler D, Davis B, Bowen R, Bunning M, 2003. Experimental infection of North American birds with the New York 1999 strain of West Nile virus. Emerg Infect Dis 9: 311322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Reisen WK, Fang Y, Martinez VM, 2005. Avian host and mosquito (Diptera: Culicidae) vector competence determine the efficiency of West Nile and St. Louis encephalitis virus transmission. J Med Entomol 42: 367375.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Nemeth NM, Oesterle PT, Bowen RA, 2009. Humoral immunity to West Nile virus is long-lasting and protective in the house sparrow (Passer domesticus). Am J Trop Med Hyg 80: 864869.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Reisen WK, Chiles RE, Green EN, Fang Y, Mahmood F, 2003. Previous infection protects finches from re-infection with St. Louis encephalitis virus. J Med Entomol 40: 300305.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Goddard LB, Roth AE, Reisen WK, Scott TW, 2003. Vertical transmission of West Nile virus by three California Culex (Diptera: Culicidae) species. J Med Entomol 40: 743746.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Reisen WK, Fang Y, Lothrop HD, Martinez VM, Wilson J, O'Connor P, Carney R, Cahoon-Young B, Shafii M, Brault AC, 2006. Overwintering of West Nile virus in southern California. J Med Entomol 43: 344355.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Dawson JR, Stone WB, Ebel GD, Young DS, Galinski DS, Pensabene JP, Franke MA, Eidson M, Kramer LD, 2007. Crow deaths caused by West Nile virus during winter. Emerg Infect Dis 13: 19121914.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Garmendia AE, Van Kruiningen HJ, French RA, Anderson JF, Andreadis TG, Kumar A, West AB, 2000. Recovery and identification of West Nile virus from a hawk in winter. J Clin Microbiol 38: 31103111.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Thiemann TC, 2011. Bloodfeeding patterns of Culex tarsalis and the Culex pipiens complex in California. Entomology. Davis, CA: University of California, 110.

  • 45.

    Chaves LF, Harrington LC, Keogh CL, Nguyen AM, Kitron UD, 2010. Blood feeding patterns of mosquitoes: random or structured? Front Zool 7: 3.

  • 46.

    Goddard L, Roth A, Reisen WK, Scott TW, 2003. Extrinsic incubation period of West Nile virus in four California Culex (Diptera: Culicidae) species. Proc Mosq Vector Control Assoc Calif 71: 7075.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    van den Driessche P, Watmough J, 2002. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180: 2948.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Anderson RM, May RM, 1991. Infectious Diseases of Humans: Dynamics and Control. Oxford, UK: Oxford University Press.

  • 49.

    Heffernan JM, Smith RJ, Wahl LM, 2005. Perspectives on the basic reproductive ratio. J R Soc Interface 2: 281293.

  • 50.

    Massad E, Coutinho FAB, Burattini MN, Amaku M, 2010. Estimation of R0 from the initial phase of an outbreak of a vector-borne infection. Trop MedInternational Hlth 15: 120126.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Dushoff J, Huang WZ, Castillo-Chavez C, 1998. Backwards bifurcations and catastrophe in simple models of fatal diseases. J Math Biol 36: 227248.

  • 52.

    Lipsitch M, Nowak MA, Ebert D, May RM, 1995. The population dynamics of vertically and horizontally transmitted parasites. Proc Biol Sci 260: 321327.

  • 53.

    Gaff H, Hartley D, Leahy N, 2007. An epidemiological model of Rift Valley fever. Electron J Diff Eqn 2007: 112.

  • 54.

    Fraser C, Riley S, Anderson RM, Ferguson NM, 2004. Factors that make an infectious disease outbreak controllable. Proc Natl Acad Sci USA 101: 61466151.

  • 55.

    Meyer RP, Hardy JL, Reisen WK, 1990. Diel changes in adult mosquito microhabitat temperatures and their relationship to the extrinsic incubation of arboviruses in mosquitoes in Kern County, California, USA. J Med Entomol 27: 607614.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Reisen WK, Lothrop HD, Meyer RP, 1997. Time of host-seeking by Culex tarsalis (Diptera: Culicidae) in California. J Med Entomol 34: 430437.

  • 57.

    Matala A, 2008. Sample Size Requirement for Monte Carlo–Simulations Using Latin Hypercube Sampling. Helsinki University of Technology, Department of Engineering Physics and Mathematics, Systems Analysis Laboratory. Available at: www.sal.tkk.fi/publications/pdf-files/emat08.pdf. Accessed January 14, 2012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Garrett-Jones C, Shidrawi GR, 1969. Malaria vectorial capacity of a population of Anopheles gambiae: an exercise in epidemiological entomology. Bull World Health Organ 40: 531545.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Mitchell CJ, Millian KY Jr, 1981. Continued host seeking by partially engorged Culex tarsalis (Diptera: Culicidae) collected in nature. J Med Entomol 18: 249250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Reisen WK, 1995. Effect of temperature on Culex tarsalis (Diptera: Culicidae) from the Coachella and San Joaquin Valleys of California. J Med Entomol 32: 636645.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Wekesa JW, Yuval B, Washino RK, 1997. Multiple blood feeding by Anopheles freeborni and Culex tarsalis (Diptera:Culicidae): spatial and temporal variation. J Med Entomol 34: 219225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Reeves WC, Hardy JL, Reisen WK, Milby MM, 1994. Potential effect of global warming on mosquito-borne arboviruses. J Med Entomol 31: 323332.

  • 63.

    Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108: 74607465.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Reisen WK, Wheeler SS, Garcia S, Fang Y, 2010. Migratory birds and the dispersal of arboviruses in California. Am J Trop Med Hyg 83: 808815.

  • 65.

    Kwan JL, Kluh S, Madon MB, Nguyen DV, Barker CM, Reisen WK, 2010. Sentinel chicken seroconversions track tangential transmission of West Nile virus to humans in the greater Los Angeles area of California. Am J Trop Med Hyg 83: 11371145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Reisen WK, Lothrop HD, Wheeler SS, Kennsington M, Gutierrez A, Fang Y, Garcia S, Lothrop B, 2008. Persistent West Nile virus transmission and the apparent displacement St. Louis encephalitis virus in southeastern California, 2003–2006. J Med Entomol 45: 494508.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Reisen WK, Carroll BD, Takahashi R, Fang Y, Garcia S, Martinez VM, Quiring R, 2009. Repeated West Nile virus epidemic transmission in Kern County, California, 2004–2007. J Med Entomol 46: 139157.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Reisen WK, Milby MM, Reeves WC, Meyer RP, Bock ME, 1983. Population ecology of Culex tarsalis (Diptera: Culicidae) in a foothill environment of Kern County, California: temporal changes in female relative abundance, reproductive status, and survivorship. Ann Entomol Soc Am 76: 800808.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Reisen WK, Lothrop HD, Hardy JL, 1995. Bionomics of Culex tarsalis (Diptera: Culicidae) in relation to arbovirus transmission in southeastern California. J Med Entomol 32: 316327.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Cornell Laboratory of Ornithology, 2011. The Birds of North America. Available at: http://bna.birds.cornell.edu/bna/. Accessed May 9, 2011.

  • 71.

    Dohm DJ, O'Guinn M, Turell MJ, 2002. Effect of environmental temperature on the ability of Culex pipiens (Diptera: Culicidae) to transmit West Nile virus. J Med Entomol 39: 221225.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Kilpatrick AM, LaDeau SL, Marra PP, 2007. Ecology of West Nile virus transmission and its impact on birds in the Western Hemisphere. Auk 124: 11211136.

Past two years Past Year Past 30 Days
Abstract Views 1388 1092 314
Full Text Views 822 9 1
PDF Downloads 344 9 1
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save