• 1.

    Tesh RB, 1995. Control of zoonotic visceral leishmaniasis: is it time to change strategies? Am J Trop Med Hyg 52: 287292.

  • 2.

    World Health Organization, 2002. Wkly Epidemiol Rec 77: 365372.

  • 3.

    Lainson R, Rangel EF, 2005. Lutzomyia longipalpis and the eco-epidemiology of American visceral leishmaniasis, with particular reference to Brazil: a review. Mem Inst Oswaldo Cruz 100: 811827.

    • Search Google Scholar
    • Export Citation
  • 4.

    Marzochi MC, Marzochi KB, 1994. Tegumentary and visceral leishmaniases in Brazil: emerging anthropozoonosis and possibilities for their control. Cad Saude Publica 10 (Suppl 2): 359375.

    • Search Google Scholar
    • Export Citation
  • 5.

    Monteiro P, Lacerda M, Arias J, 1994. Controle da leishmaniose visceral no Brasil. Rev Soc Bras Med Trop 27: 27.

  • 6.

    Baneth G, Koutinas AF, Solano-Gallego L, Bourdeau P, Ferrer L, 2008. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: part one. Trends Parasitol 24: 324330.

    • Search Google Scholar
    • Export Citation
  • 7.

    Moreno J, Alvar J, 2002. Canine leishmaniasis: epidemiological risk and the experimental model. Trends Parasitol 18: 399405.

  • 8.

    Mauricio IL, Stothard JR, Miles MA, 2000. The strange case of Leishmania chagasi. Parasitol Today 16: 188189.

  • 9.

    Hide M, Banuls AL, Tibayrenc M, 2001. Genetic heterogeneity and phylogenetic status of Leishmania (Leishmania) infantum zymodeme MON-1: epidemiological implications. Parasitology 123: 425432.

    • Search Google Scholar
    • Export Citation
  • 10.

    Kuhls K, Keilonat L, Ochsenreither S, Schaar M, Schweynoch C, Presber W, Schonian G, 2007. Multilocus microsatellite typing (MLMT) reveals genetically isolated populations between and within the main endemic regions of visceral leishmaniasis. Microbes Infect 9: 334343.

    • Search Google Scholar
    • Export Citation
  • 11.

    Lukes J, Mauricio IL, Schonian G, Dujardin JC, Soteriadou K, Dedet JP, Kuhls K, Tintaya KW, Jirku M, Chocholova E, Haralambous C, Pratlong F, Obornik M, Horak A, Ayala FJ, Miles MA, 2007. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc Natl Acad Sci USA 104: 93759380.

    • Search Google Scholar
    • Export Citation
  • 12.

    Toledo A, Martin-Sanchez J, Pesson B, Sanchiz-Marin C, Morillas-Marquez F, 2002. Genetic variability within the species Leishmania infantum by RAPD. A lack of correlation with zymodeme structure. Mol Biochem Parasitol 119: 257264.

    • Search Google Scholar
    • Export Citation
  • 13.

    Zemanova E, Jirku M, Mauricio IL, Miles MA, Lukes J, 2004. Genetic polymorphism within the Leishmania donovani complex: correlation with geographic origin. Am J Trop Med Hyg 70: 613617.

    • Search Google Scholar
    • Export Citation
  • 14.

    Mauricio IL, Howard MK, Stothard JR, Miles MA, 1999. Genomic diversity in the Leishmania donovani complex. Parasitology 119: 237246.

  • 15.

    Alonso DP, Costa DL, de Mendonca IL, Costa CH, Ribolla PE, 2010. Heterogeneity of Leishmania infantum chagasi kinetoplast DNA in Teresina (Brazil). Am J Trop Med Hyg 82: 819821.

    • Search Google Scholar
    • Export Citation
  • 16.

    Segatto M, Ribeiro LS, Costa DL, Costa CH, Oliveira MR, Carvalho SF, Macedo AM, Valadares HM, Dietze R, Brito CF, Lemos EM, 2011. Genetic diversity of Leishmania infantum field populations from Brazil. Mem Inst Oswaldo Cruz 107: 3947.

    • Search Google Scholar
    • Export Citation
  • 17.

    Kuhls K, Alam MZ, Cupolillo E, Ferreira GE, Mauricio IL, Oddone R, Feliciangeli MD, Wirth T, Miles MA, Schonian G, 2011. Comparative microsatellite typing of New World Leishmania infantum reveals low heterogeneity among populations and its recent Old World origin. PLoS Negl Trop Dis 5: e1155.

    • Search Google Scholar
    • Export Citation
  • 18.

    Paranhos-Silva M, Freitas LA, Santos WC, Grimaldi GJ, Pontes-de-Carvalho LC, Oliveira-dos-Santos AJ, 1996. A cross-sectional serodiagnostic survey of canine leishmaniasis due to Leishmania chagasi. Am J Trop Med Hyg 55: 3944.

    • Search Google Scholar
    • Export Citation
  • 19.

    Bio-Manguinhos-Instituto_de_Tecnologia_em_Imunobiológicos, 2004. Imunofluorescência indireta para diagnóstico da leishmaniose visceral canina. Rio de Janeiro, Brasil: FIOCRUZ.

    • Search Google Scholar
    • Export Citation
  • 20.

    Mancianti F, Gramiccia M, Gradoni L, Pieri S, 1988. Studies on canine leishmaniasis control. 1. Evolution of infection of different clinical forms of canine leishmaniasis following antimonial treatment. Trans R Soc Trop Med Hyg 82: 566567.

    • Search Google Scholar
    • Export Citation
  • 21.

    Ministério_da_Saúde, 2006. Leishmaniose Visceral Grave. Normas e Condutas. Normas e Manuais Técnicos. Série A. Brasília, Brazil: Editora MS. 159.

    • Search Google Scholar
    • Export Citation
  • 22.

    Secretaria_de_Vigilancia_em_Saude, 2003. Manual de vigilancia e controle da leishmaniose visceral. Brasélia, Brazil: Epidemiológica DdV, Ministerio da Saude.

    • Search Google Scholar
    • Export Citation
  • 23.

    Sherlock I, Santos A, 1964. Visceral leishmaniasis in the region of Jequié, state of Bahia. Rev Bras Malariol Doenças Trop 16: 441448.

  • 24.

    Silva ES, Oliveira AG, Carvalho FG, Silva EA, Friozi E, Farias R, 2000. Primeiro relato de leishmaniose visceral canina em área urbana do município de Campo Grande, Mato Grosso do Sul. Proceedings of the XXXVI Congresso Brasileiro de Medicina Tropical, São Luís, Maranhão, Brazil, February 20, 2000. 318.

    • Search Google Scholar
    • Export Citation
  • 25.

    SINAN_Serviço_de_Vigilância_Epidemiológica, 2009. Prefeitura Municipal de Campo Grande-Coordenadoria de Vigilância em Saúde-Secretaria Municipal de Saúde CG, MS. Campo Grande, Brazil: Prefeitura Municipal de Campo Grande.

    • Search Google Scholar
    • Export Citation
  • 26.

    Melby PC, Tryon VV, Chandrasekar B, Freeman GL, 1998. Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect Immun 66: 21352142.

    • Search Google Scholar
    • Export Citation
  • 27.

    Medina-Acosta E, Cross GA, 1993. Rapid isolation of DNA from trypanosomatid protozoa using a simple ‘mini-prep’ procedure. Mol Biochem Parasitol 59: 327329.

    • Search Google Scholar
    • Export Citation
  • 28.

    Zemanova E, Jirku M, Mauricio IL, Horak A, Miles MA, Lukes J, 2007. The Leishmania donovani complex: genotypes of five metabolic enzymes (ICD, ME, MPI, G6PDH, and FH), new targets for multilocus sequence typing. Int J Parasitol 37: 149160.

    • Search Google Scholar
    • Export Citation
  • 29.

    Schriefer A, Schriefer AL, Goes-Neto A, Guimaraes LH, Carvalho LP, Almeida RP, Machado PR, Lessa HA, de Jesus AR, Riley LW, Carvalho EM, 2004. Multiclonal Leishmania braziliensis population structure and its clinical implication in a region of endemicity for American tegumentary leishmaniasis. Infect Immun 72: 508514.

    • Search Google Scholar
    • Export Citation
  • 30.

    Ochsenreither S, Kuhls K, Schaar M, Presber W, Schonian G, 2006. Multilocus microsatellite typing as a new tool for discrimination of Leishmania infantum MON-1 strains. J Clin Microbiol 44: 495503.

    • Search Google Scholar
    • Export Citation
  • 31.

    Minch E, Ruíz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza L, 1995. MICROSAT, the Microsatellite Distance Program. Stanford, CA: Stanford University Press.

    • Search Google Scholar
    • Export Citation
  • 32.

    Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL, 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455457.

    • Search Google Scholar
    • Export Citation
  • 33.

    Felsenstein J, 1996. Inferring phylogenies from protein sequences by parsimony, distance, and likelihood methods. Methods Enzymol 266: 418427.

    • Search Google Scholar
    • Export Citation
  • 34.

    Roderic D, 1996. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357358.

  • 35.

    Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959.

  • 36.

    Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.

    • Search Google Scholar
    • Export Citation
  • 37.

    Excoffier L, Laval G, Schneider S, 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750.

    • Search Google Scholar
    • Export Citation
  • 38.

    Tajima F, Tokunaga T, Miyashita NT, 1994. Statistical methods for estimating the effective number of alleles, expected heterozygosity and genetic distance in self-incompatibility locus. Jpn J Genet 69: 287295.

    • Search Google Scholar
    • Export Citation
  • 39.

    Saldanha Machado C, Tereza A, Filipecki P, Teixeira M, 2009. Current Brazilian law on animal experimentation. Science 324: 16431644.

  • 40.

    Wright S, 1978. Variability Within and Among Natural Populations. Evolution and the Genetics of Populations. Chicago, IL: University of Chicago Press.

    • Search Google Scholar
    • Export Citation
  • 41.

    Perez T, Albornoz J, Dominguez A, 1998. An evaluation of RAPD fragment reproducibility and nature. Mol Ecol 7: 13471357.

  • 42.

    Rabouam C, Comes AM, Bretagnolle VV, Humbert JF, Periquet G, Bigot Y, 1999. Features of DNA fragments obtained by random amplified polymorphic DNA (RAPD) assays. Mol Ecol 8: 493503.

    • Search Google Scholar
    • Export Citation
  • 43.

    Banuls AL, Hide M, Tibayrenc M, 1999. Molecular epidemiology and evolutionary genetics of Leishmania parasites. Int J Parasitol 29: 11371147.

    • Search Google Scholar
    • Export Citation
  • 44.

    Kuhls K, Chicharro C, Canavate C, Cortes S, Campino L, Haralambous C, Soteriadou K, Pratlong F, Dedet JP, Mauricio I, Miles M, Schaar M, Ochsenreither S, Radtke OA, Schonian G, 2008. Differentiation and gene flow among European populations of Leishmania infantum MON-1. PLoS Negl Trop Dis 2: e261.

    • Search Google Scholar
    • Export Citation
  • 45.

    Botilde Y, Laurent T, Quispe Tintaya W, Chicharro C, Canavate C, Cruz I, Kuhls K, Schonian G, Dujardin JC, 2006. Comparison of molecular markers for strain typing of Leishmania infantum. Infect Genet Evol 6: 440446.

    • Search Google Scholar
    • Export Citation
  • 46.

    Cortes S, Mauricio I, Almeida A, Cristovao JM, Pratlong F, Dedet JP, Campino L, 2006. Application of kDNA as a molecular marker to analyse Leishmania infantum diversity in Portugal. Parasitol Int 55: 277283.

    • Search Google Scholar
    • Export Citation
  • 47.

    Laurent T, Rijal S, Yardley V, Croft S, De Doncker S, Decuypere S, Khanal B, Singh R, Schonian G, Kuhls K, Chappuis F, Dujardin JC, 2007. Epidemiological dynamics of antimonial resistance in Leishmania donovani: genotyping reveals a polyclonal population structure among naturally-resistant clinical isolates from Nepal. Infect Gen Evol 7: 206212.

    • Search Google Scholar
    • Export Citation
  • 48.

    Morales MA, Chicharro C, Ares M, Canavate C, Barker DC, Alvar J, 2001. Molecular tracking of infections by Leishmania infantum. Trans R Soc Trop Med Hyg 95: 104107.

    • Search Google Scholar
    • Export Citation
  • 49.

    Bhattarai NR, Dujardin JC, Rijal S, De Doncker S, Boelaert M, Van der Auwera G, 2010. Development and evaluation of different PCR-based typing methods for discrimination of Leishmania donovani isolates from Nepal. Parasitology 137: 947957.

    • Search Google Scholar
    • Export Citation
  • 50.

    Montoya L, Gallego M, Gavignet B, Piarroux R, Rioux JA, Portus M, Fisa R, 2007. Application of microsatellite genotyping to the study of a restricted Leishmania infantum focus: different genotype compositions in isolates from dogs and sand flies. Am J Trop Med Hyg 76: 888895.

    • Search Google Scholar
    • Export Citation
  • 51.

    Grimaldi G Jr, Tesh RB, McMahon-Pratt D, 1989. A review of the geographic distribution and epidemiology of leishmaniasis in the New World. Am J Trop Med Hyg 41: 687725.

    • Search Google Scholar
    • Export Citation
  • 52.

    Grisard EC, Steindel M, Shaw JJ, Ishikawa EA, Carvalho-Pinto CJ, Eger-Mangrich I, Toma HK, Lima JH, Romanha AJ, Campbell DA, 2000. Characterization of Leishmania sp. strains isolated from autochthonous cases of human cutaneous leishmaniasis in Santa Catarina State, southern Brazil. Acta Trop 74: 8993.

    • Search Google Scholar
    • Export Citation
  • 53.

    Travi BL, Velez ID, Brutus L, Segura I, Jaramillo C, Montoya J, 1990. Lutzomyia evansi, an alternate vector of Leishmania chagasi in a Colombian focus of visceral leishmaniasis. Trans R Soc Trop Med Hyg 84: 676677.

    • Search Google Scholar
    • Export Citation
  • 54.

    Marzochi MC, Marzochi KB, Carvalho RW, 1994. Visceral leishmaniasis in Rio de Janeiro. Parasitol Today 10: 3740.

  • 55.

    Belli A, Garcia D, Palacios X, Rodriguez B, Valle S, Videa E, Tinoco E, Marin F, Harris E, 1999. Widespread atypical cutaneous leishmaniasis caused by Leishmania (L.) chagasi in Nicaragua. Am J Trop Med Hyg 61: 380385.

    • Search Google Scholar
    • Export Citation
  • 56.

    Noyes HA, Arana BA, Chance ML, Maingon R, 1997. The Leishmania hertigi (Kinetoplastida; Trypanosomatidae) complex and the lizard Leishmania: their classification and evidence for a neotropical origin of the Leishmania-Endotrypanum clade. J Eukaryot Microbiol 44: 511517.

    • Search Google Scholar
    • Export Citation
  • 57.

    Momen H, Pacheco RS, Cupolillo E, Grimaldi Junior G, 1993. Molecular evidence for the importation of Old World Leishmania into the Americas. Biol Res 26: 249255.

    • Search Google Scholar
    • Export Citation
  • 58.

    Leblois R, Kuhls K, Francois O, Schonian G, Wirth T, 2011. Guns, germs and dogs: On the origin of Leishmania chagasi. Infect Gen Evol 11: 10911095.

    • Search Google Scholar
    • Export Citation
  • 59.

    Akopyants NS, Kimblin N, Secundino N, Patrick R, Peters N, Lawyer P, Dobson DE, Beverley SM, Sacks DL, 2009. Demonstration of genetic exchange during cyclical development of Leishmania in the sand fly vector. Science 324: 265268.

    • Search Google Scholar
    • Export Citation
 
 
 
 

 

 
 
 

 

 

 

 

 

 

An Assessment of the Genetic Diversity of Leishmania infantum Isolates from Infected Dogs in Brazil

View More View Less
  • Laboratório de Patologia e Biointervenção do CPqGM, FIOCRUZ, Bahia, Brazil; Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia ICB-UFMG, Minas Gerais, Brazil; Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, UFBa, Bahia, Brazil; Universidade Federal de Mato Grosso do Sul, Departamento de Morfofisiologia, Campo Grande, Brazil; Prefeitura Municipal de Campo Grande, Secretaria Municipal de Saúde Pública Sesau, Centro de Controle de Zoonoses, Mato Grosso do Sul, Brazil; Departamento de Biointeração, Instituto de Ciências da Saúde, UFBa, Bahia, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT)

Correlations between the genetic diversity of Leishmania infantum (syn. L. chagasi) isolates and their respective geographic origins support the theoretic assumption that visceral leishmaniasis probably originated in the Old World. Because dogs are widely considered to be the main reservoir of this disease, the present study aimed to investigate the degree of genetic divergence among 44 leishmanial canine isolates from two Brazilian cities, Jequié and Campo Grande, located approximately 2,028 km from each other. We hypothesized that a low degree of genetic divergence would be observed among these isolates. In fact, statistical analyses found no significant differences between the isolates using both random amplified polymorphic DNA and multilocus microsatellite typing genotyping techniques with three and seven markers, respectively. These findings provide support for the recent introduction of L. infantum into the New World.

Author Notes

*Address correspondence to Patrícia S. T. Veras, Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, RuaWaldemarFalcão, 121, Candeal, Salvador/BA, Brazil. E-mail: pveras@bahia.fiocruz.br

Authors' addresses: Luís Fábio da S. Batista, Carlos Eduardo S. Guedes, Joselli S. Silva, Silvana O. Santos, Daniela Larangeira, and Patrícia S. T. Veras, Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Salvador, BA, Brazil, E-mails: luisfabio.batista@terra.com.br, cesguedes@yahoo.com.br, jssilva@bahia.fiocruz.br, sicavet@yahoo.com.br, danielalarangeira@yahoo.com.br, and pveras@bahia.fiocruz.br. Marcela Segatto and Andréa Mara Macedo, Laboratório de Genética Bioquímica, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil, E-mails: marcelasegatto@yahoo.com.br and andrea@icb.ufmg.br. Cleusa A. T. Rodrigues, Universidade Federal de Mato Grosso do Sul, Departamento de Morfofisiologia, Campo Grande, MS, Brazil, E-mail: cleusaatr@terra.com.br. Júlia Cristina M. Brazuna, Prefeitura Municipal de Campo Grande, Secretaria Municipal de Saúde Pública Sesau, Centro de Controle de Zoonoses, Campo Grande, MS, Brazil, E-mail: ccz@sesau.capital.ms.gov.br. Rosana S. Sousa and Albert Schriefer, Universidade Federal da Bahia, Hospital Universitário Professor Edgard Santos, Serviço de Imunologia, Salvador, BA, Brazil, E-mails: rosanassousa@ig.com.br and aschriefer@globo.com.

Save