Effects of Beauveria bassiana on Survival, Blood-Feeding Success, and Fecundity of Aedes aegypti in Laboratory and Semi-Field Conditions

Jonathan M. Darbro Queensland Institute of Medical Research, Brisbane, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia; Pennsylvania State University, University Park, Pennsylvania; Monash University, Melbourne, Victoria, Australia

Search for other papers by Jonathan M. Darbro in
Current site
Google Scholar
PubMed
Close
,
Petrina H. Johnson Queensland Institute of Medical Research, Brisbane, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia; Pennsylvania State University, University Park, Pennsylvania; Monash University, Melbourne, Victoria, Australia

Search for other papers by Petrina H. Johnson in
Current site
Google Scholar
PubMed
Close
,
Matthew B. Thomas Queensland Institute of Medical Research, Brisbane, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia; Pennsylvania State University, University Park, Pennsylvania; Monash University, Melbourne, Victoria, Australia

Search for other papers by Matthew B. Thomas in
Current site
Google Scholar
PubMed
Close
,
Scott A. Ritchie Queensland Institute of Medical Research, Brisbane, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia; Pennsylvania State University, University Park, Pennsylvania; Monash University, Melbourne, Victoria, Australia

Search for other papers by Scott A. Ritchie in
Current site
Google Scholar
PubMed
Close
,
Brian H. Kay Queensland Institute of Medical Research, Brisbane, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia; Pennsylvania State University, University Park, Pennsylvania; Monash University, Melbourne, Victoria, Australia

Search for other papers by Brian H. Kay in
Current site
Google Scholar
PubMed
Close
, and
Peter A. Ryan Queensland Institute of Medical Research, Brisbane, Queensland, Australia; School of Public Health, Tropical Medicine and Rehabilitative Sciences, James Cook University, Cairns, Queensland, Australia; Pennsylvania State University, University Park, Pennsylvania; Monash University, Melbourne, Victoria, Australia

Search for other papers by Peter A. Ryan in
Current site
Google Scholar
PubMed
Close
Restricted access

The fungus Beauveria bassiana reduces Aedes aegypti longevity in laboratory conditions, but effects on survival, blood-feeding behavior, and fecundity in realistic environmental conditions have not been tested. Adult, female Ae. aegypti infected with B. bassiana (FI-277) were monitored for blood-feeding success and fecundity in the laboratory. Fungal infection reduced mosquito-human contact by 30%. Fecundity was reduced by (mean ± SD) 29.3 ± 8.6 eggs per female per lifetime in the laboratory; egg batch size and viability were unaffected. Mosquito survival, blood-feeding behavior, and fecundity were also tested in 5 meter×7 meter×4 meter semi-field cages in northern Queensland, Australia. Fungal infection reduced mosquito survival in semi-field conditions by 59–95% in large cages compared with 61–69% in small cages. One semi-field cage trial demonstrated 80% reduction in blood-feeding; a second trial showed no significant effect. Infection did not affect fecundity in large cages. Beauveria bassiana can kill and may reduce biting of Ae. aegypti in semi-field conditions and in the laboratory. These results further support the use of B. bassiana as a potential biocontrol agent against Ae. aegypti.

Author Notes

*Address correspondence to Jonathan M. Darbro, Mosquito Control Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland QLD 4029, Australia. E-mail: jonathan.darbro@qimr.edu.au

Financial support: This study was supported by National Health and Medical Research Council project grant #424600 and program grant #496601.

Authors' addresses: Jonathan M. Darbro and Brian H. Kay, Mosquito Control Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, Brisbane, Queensland, Australia, E-mails: jonathan.darbro@qimr.edu.au and brian.kay@qimr.edu.au. Scott A. Ritchie, Tropical Public Health Entomology, School of Public Health and Tropical Medical and Rehabilitations Sciences, James Cook University, Cairns, Queensland, Australia, E-mail: scott.ritchie@jcu.edu.au. Matthew B. Thomas, Center for Infectious Disease Dynamics and Department of Entomology, 1 Chemical Ecology Laboratory, Pennsylvania State University, University Park, PA, E-mail: mbt13@psu.edu. Peter A. Ryan and Petrina H. Johnson, School of Biological Sciences, Monash University, Melbourne, Victoria, Australia, E-mails: peter.a.ryan@monash.edu.au and petrinahj@gmail.com.

  • 1.

    Hemingway J, Ranson H, 2000. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45 : 371391.

  • 2.

    Ponlawat A, Scott JG, Harrington LC, 2005. Insecticide susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J Med Entomol 42 : 821825.

  • 3.

    Cui F, Raymond M, Qiao C-L, 2006. Insecticide resistance in vector mosquitoes in China. Pest Manag Sci 62 : 10131022.

  • 4.

    García GP, Flores AE, Fernández-Salas I, Saaveda-Rodríguez K, Reyes-Solis G, Lozano-Fuentes S, Bond JG, Casas-Martínez M, Ramsey JM, García-Rejón J, Domínguez-Galera M, Ranson H, Hemingway J, Eisen L, Black WC, 2009. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in México. Public Library of Science Neglected Tropical Diseases 3 : e531.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Scholte E-J, Njiru BN, Smallegange RC, Takken W, Knols BG, 2003. Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae. Malar J 2 : 29.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kikankie CK, Brooke BD, Knols BG, Koekemoer LL, Farenhorst M, Hunt RH, Thomas MB, Coatzee M, 2010. The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures. Malar J 9 : 71.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Mnyone LL, Kirby MJ, Lwetoijera DW, Mpingwa MW, Knols BG, Takken W, Russell TL, 2009. Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence. Malar J 8 : 309.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Scholte E-J, Takken W, Knols BG, 2007. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 102 : 151158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    de Paula AR, Brito ES, Pereira CR, Carrera MP, Samuels RI, 2008. Susceptibility of adult Aedes aegypti (Diptera: Culicidae) to infection by Metarhizium anisopliae and Beauveria bassiana: prospects for dengue vector control. Biocontrol Sci Technol 18 : 10171025.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Darbro JM, Graham RI, Kay BH, Ryan PA, Thomas MB, 2011. Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Biocontrol Sci Technol 21 : 10271047.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Scholte E-J, Knols BG, Takken W, 2006. Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. J Invertebr Pathol 91 : 4349.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Blanford S, Chan BH, Jenkins N, Sim D, Turner RJ, Read AF, Thomas MB, 2005. Fungal pathogen reduces potential for malaria transmission. Science 308 : 16381641.

  • 13.

    Farenhorst M, Mouatcho JC, Kikankie CK, Brooke BD, Hunt RH, Thomas MB, Koekemoer LL, Knols BG, Coatzee M, 2009. Fungal infection counters insecticide resistance in African malaria mosquitoes. Proc Natl Acad Sci USA 106 : 1744317447.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Howard AFV, Koenraadt CJ, Farenhorst M, Knols BG, Takken W, 2010. Pyrethroid resistance in Anopheles gambiae leads to increased susceptibility to the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana. Malar J 9 : 168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Scholte E-J, Ng'habi K, Kihonda J, Takken W, Paaijmans K, Abdullah S, Killeen GF, Knols BG, 2005. An entomopathic fungus for the control of adult African malaria mosquitoes. Science 308 : 16411642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Farenhorst M, Farina D, Scholte E-J, Takken W, Hunt RH, Coetzee M, Knols BG, 2008. African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg 78 : 910916.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lwetoijera DW, Sumaye RD, Madumla EP, Kavishe DR, Mnyone LL, Russell TL, Okumu FO, 2010. An extra-domiciliary method of delivering entomopathogenic fungus, Metarhizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis. Parasites and Vectors 3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Darbro JM, Thomas MB, 2009. Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. Am J Trop Med Hyg 80 : 992997.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Howard AF, N’Guessan R, Koenraadt CJ, Asidi A, Farenhorst M, Akogbeto M, Thomas MB, Knols BG, Takken W, 2010. The entomopathogenic fungus Beauveria bassiana reduces instantaneous blood feeding in wild multi-insecticide resistant Culex quinquefasciatus in Benin, west Africa. Parasites and Vectors 3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Blanford S, Thomas MB, 2001. Adult survival, maturation and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. J Invertebr Pathol 78 : 18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Ritchie SA, Johnson PH, Freeman AJ, Odell RG, Graham N, DeJong PA, Standfield GW, Sale RW, O'Neill SL, 2011. A secure semi-field system for the study of Aedes aegypti. PLoS Negl Trop Dis 5 : e988.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Clark GG, Seda H, Gubler DJ, 1994. Use of the “CDC backpack aspirator” for surveillance of Aedes aegypti in San Juan, Puerto Rico. J Am Mosq Control Assoc 10 : 119124.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Abbott WS, 1925. A method of computing the effectiveness of an insecticide. J Econ Entomol 18 : 265267.

  • 24.

    Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, Thomas MB, Scott TW, 2011. Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci USA 108 : 74607465.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Paajimans KP, Read AF, Thomas MB, 2009. Understanding the link between malaria risk and climate. Proc Natl Acad Sci USA 106 : 1384413849.

  • 26.

    Blanford S, Thomas MB, 2001. Adult survival, maturation, and reproduction of the desert locust Schistocerca gregaria infected with the fungus Metarhizium anisopliae var acridum. J Invertebr Pathol 78 : 18.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Blanford S, Read AF, Thomas MB, 2009. Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal pathogens. Malar J 8 : 72.

  • 28.

    Canyon DV, Hii JL, 1997. The gecko: an environmentally friendly biological agent for mosquito control. Med Vet Entomol 11 : 319332.

  • 29.

    Wilson ML, Agudelo-Silva F, Spielman A, 1990. Increased abundance, size and longevity of food-deprived mosquito populations exposed to a larval fungicide. Am J Trop Med Hyg 43 : 551556.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mnyone LL, Kirby MJ, Mpingwa MW, Lwetoijera DW, Knols BG, Takken W, Koenraadt CJ, Russell TL, 2011. Infection of Anopheles gambiae mosquitoes with entomopathogenic fungi: effect of host age and blood-feeding status. Parasitological Research 108 : 317322.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Paula AR, Carolino AT, Paula CO, Samuels RI, 2011. Susceptibility of adult female Aedes aegypti (Diptera: Culicidae) to the entomopathogenic fungus Metarhizium anisopliae is modified following blood feeding. Parasites and Vectors 4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Garcia-Munguia AM, Garza-Hernandez JA, Rebollar-Tallez EA, Rodriguez-Perez RA, Reyes-Villanueva F, 2011. Transmission of Beauveria bassiana from male to female Aedes aegypti mosquitoes. Parasites and Vectors 4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ball TS, Ritchie SA, 2010. Evaluation of BG-Sentinel trap trapping efficacy for Aedes aegypti (Diptera: Culicidae) in a visually competitive environment. J Med Entomol 47 : 657663.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 849 742 27
Full Text Views 830 13 0
PDF Downloads 212 11 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save