• 1.

    Wilder-Smith A, Gubler DJ, 2008. Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92 : 13771390.

    • Search Google Scholar
    • Export Citation
  • 2.

    Gubler DJ, Clark GG, 1996. Community involvement in the control of Aedes aegypti. Acta Trop 61 : 169179.

  • 3.

    Gubler DJ, 2008. Dengue/dengue haemorrhagic fever: history and current status. In New Treatment Strategies for Dengue and Other Flaviviral Diseases: Novartis Foundation Symposium 277 ( Bock G, Goode J, eds). Chichester, UK: John Wiley and Sons, Ltd.

    • Search Google Scholar
    • Export Citation
  • 4.

    Swaminathan S, Khanna N, 2009. Dengue: recent advances in biology and current status of translational research. Curr Mol Med 9 : 152173.

    • Search Google Scholar
    • Export Citation
  • 5.

    Webster DP, Farrar J, Rowland-Jones S, 2009. Progress towards a dengue vaccine. Lancet Infect Dis 9 : 678687.

  • 6.

    Speranca MA, Capurro ML, 2007. Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era—a review. Mem Inst Oswaldo Cruz 102 : 425433.

    • Search Google Scholar
    • Export Citation
  • 7.

    Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476 : 454457.

    • Search Google Scholar
    • Export Citation
  • 8.

    Olson KE, Alphey L, Carlson JO, James AA, 2006. Genetic approaches in Aedes aegypti for control of dengue: an overview. Knols BGJ , Louis C , eds. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Dordrecht, The Netherlands: Springer.

    • Search Google Scholar
    • Export Citation
  • 9.

    Fu G, Lees RS, Nimmo D, Aw D, Jin L, Gray P, Berendonk TU, White-Cooper H, Scaife S, Kim Phuc H, Marinotti O, Jasinskiene N, James AA, Alphey L, 2010. Female-specific flightless phenotype for mosquito control. Proc Natl Acad Sci USA 107 : 45504554.

    • Search Google Scholar
    • Export Citation
  • 10.

    Aldridge S, 2008. Genetically modified mosquitoes. Nat Biotechnol 26 : 725.

  • 11.

    Marshall JM, Taylor CE, 2009. Malaria control with transgenic mosquitoes. PLoS Med 6: e20.

  • 12.

    Scott TW, Takken W, Knols BG, Boete C, 2002. The ecology of genetically modified mosquitoes. Science 298 : 117119.

  • 13.

    Charlwood JD, Thompson R, Madsen H, 2003. Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malar J 2 : 2.

    • Search Google Scholar
    • Export Citation
  • 14.

    Yuval B, Wekesa JW, Washino RK, 1993. Effects of body size on swarming behavior and mating success of male Anopheles freeborni (Diptera: Culicidae). J Insect Behav 6 : 333342.

    • Search Google Scholar
    • Export Citation
  • 15.

    Hartberg WK, 1971. Observations on the mating behaviour of Aedes aegypti in nature. Bull World Health Organ 45 : 847850.

  • 16.

    Yuval B, 2006. Mating systems of blood-feeding flies. Annu Rev Entomol 51 : 413440.

  • 17.

    Clements AN, 1999. The Biology of Mosquitoes. Volume 2: Sensory, Reception and Behaviour. Wallingford, UK: CABI Publishing.

  • 18.

    Arnqvist G, Nilsson T, 2000. The evolution of polyandry: multiple mating and female fitness in insects. Anim Behav 60 : 145164.

  • 19.

    Gwadz RW, Craig GB Jr, 1970. Female polygamy due to inadequate semen transfer in Aedes aegypti. Mosq News 30 : 355360.

  • 20.

    Williams RW, Berger A, 1980. The relation of female polygamy to gonotrophic activity in the ROCK strain of Aedes aegypti. Mosq News 40 : 597604.

    • Search Google Scholar
    • Export Citation
  • 21.

    Mahmood F, Reisen WK, 1980. Anopheles culicifacies the occurrence of multiple insemination under laboratory conditions. Entomol Exp Appl 27 : 6976.

    • Search Google Scholar
    • Export Citation
  • 22.

    Craig GB, 1967. Mosquitoes: female monogamy induced by male accessory gland substance. Science 156 : 14991501.

  • 23.

    Gwadz RW, Craig GB Jr, Hickey WA, 1971. Female sexual behavior as the mechanism rendering Aedes aegypti refractory to insemination. Biol Bull 140 : 201214.

    • Search Google Scholar
    • Export Citation
  • 24.

    Dickinson JM, Klowden MJ, 1997. Reduced transfer of male accessory gland proteins and monandry in female Aedes aegypti mosquitoes. J Vector Ecol 22 : 95.

    • Search Google Scholar
    • Export Citation
  • 25.

    Fuchs MS, Craig GB, Despommier DD, 1969. The protein nature of the substance inducing female monogramy in Aedes aegypti. J Insect Physiol 15 : 701709.

    • Search Google Scholar
    • Export Citation
  • 26.

    Facchinelli L, Valerio L, Bond JG, Wise de Valdez M, Harrington LC, Ramsey JM, Casas-Martinez M, Scott TW, 2011. Development of a semi-field system for contained field trials with Aedes aegypti in southern México. Am J Trop Med Hyg 58 : 248256.

    • Search Google Scholar
    • Export Citation
  • 27.

    Yuval B, Fritz GN, 1994. Multiple mating in female mosquitoes? Evidence from a field population of Anopheles freeborni (Diptera: Culicidae). Bull Entomol Res 84 : 137139.

    • Search Google Scholar
    • Export Citation
  • 28.

    Tripet F, Toure YT, Dolo G, Lanzaro GC, 2003. Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg 68 : 15.

    • Search Google Scholar
    • Export Citation
  • 29.

    Chambers EW, Meece JK, McGowan JA, Lovin DD, Hemme RR, Chadee DD, McAbee K, Brown SE, Knudson DL, Severson DW, 2007. Microsatellite isolation and linkage group identification in the yellow fever mosquito Aedes aegypti. J Hered 98 : 202210.

    • Search Google Scholar
    • Export Citation
  • 30.

    Bataille A, Horsburgh GJ, Dawson DA, Cunningham AA, Goodman SJ, 2009. Microsatellite markers characterized in the mosquito Aedes taeniorhynchus (Diptera, Culicidae), a disease vector and major pest on the American coast and the Galapagos Islands. Infect Genet Evol 9 : 971975.

    • Search Google Scholar
    • Export Citation
  • 31.

    Lovin DD, Washington KO, deBruyn B, Hemme RR, Mori A, Epstein SR, Harker BW, Streit TG, Severson DW, 2009. Genome-based polymorphic microsatellite development and validation in the mosquito Aedes aegypti and application to population genetics in Haiti. BMC Genomics 10 : 590.

    • Search Google Scholar
    • Export Citation
  • 32.

    Helinski ME, Hood RC, Knols BG, 2008. A stable isotope dual-labeling approach to detect multiple insemination in un-irradiated and irradiated Anopheles arabiensis mosquitoes. Parasit Vectors 1 : 9.

    • Search Google Scholar
    • Export Citation
  • 33.

    Helinski ME, Hood-Nowotny R, Mayr L, Knols BG, 2007. Stable isotope-mass spectrometric determination of semen transfer in malaria mosquitoes. J Exp Biol 210 : 12661274.

    • Search Google Scholar
    • Export Citation
  • 34.

    Helinski ME, Hood RC, Gludovacz D, Mayr L, Knols BG, 2008. A 15N stable isotope semen label to detect mating in the malaria mosquito Anopheles arabiensis Patton. Parasit Vectors 1 : 19.

    • Search Google Scholar
    • Export Citation
  • 35.

    Macneale KH, Peckarsky BL, Likens GE, 2005. Stable isotopes identify dispersal patterns of stonefly populations living along stream corridors. Freshw Biol 50 : 11171130.

    • Search Google Scholar
    • Export Citation
  • 36.

    Sokal RR, Rohlf FJ, 1995. Biometry: The Principles and Practice of Statistics in Biological Research. New York: W. H. Freeman and Co.

  • 37.

    Malausa T, Bethenod MT, Bontemps A, Bourguet D, Cornuet JM, Ponsard S, 2005. Assortative mating in sympatric host races of the European corn borer. Science 308 : 258260.

    • Search Google Scholar
    • Export Citation
  • 38.

    Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37 : 89101.

    • Search Google Scholar
    • Export Citation
  • 39.

    Garcia-Rejon J, Lorono-Pino MA, Farfan-Ale JA, Flores-Flores L, Del Pilar Rosado-Paredes E, Rivero-Cardenas N, Najera-Vazquez R, Gomez-Carro S, Lira-Zumbardo V, GonzalezMartinez P, Lozano-Fuentes S, Elizondo-Quiroga D, Beaty BJ, Eisen L, 2008. Dengue virus-infected Aedes aegypti in the home environment. Am J Trop Med Hyg 79 : 940950.

    • Search Google Scholar
    • Export Citation
  • 40.

    Harrington LC, Scott TW, Lerdthusnee K, Coleman RC, Costero A, Clark GG, Jones JJ, Kitthawee S, Kittayapong P, Sithiprasasna R, Edman JD, 2005. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am J Trop Med Hyg 72 : 209220.

    • Search Google Scholar
    • Export Citation
  • 41.

    Jones TM, 1974. Sexual activities during single and multiple co-habitations in Aedes aegypti mosquitoes. J Ent (A) 48 : 185191.

  • 42.

    Hiss EA, Fuchs MS, 1972. The effect of matrone on oviposition in the mosquito, Aedes aegypti. J Insect Physiol 18 : 22172227.

  • 43.

    Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK, Partridge L, 2003. The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100 : 99239928.

    • Search Google Scholar
    • Export Citation
  • 44.

    Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P, 1988. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster. Cell 54 : 291298.

    • Search Google Scholar
    • Export Citation
  • 45.

    Sirot LK, Poulson RL, McKenna MC, Girnary H, Wolfner MF, Harrington LC, 2008. Identity and transfer of male reproductive gland proteins of the dengue vector mosquito, Aedes aegypti: potential tools for control of female feeding and reproduction. Insect Biochem Mol Biol 38 : 176189.

    • Search Google Scholar
    • Export Citation
  • 46.

    Sirot LK, Hardstone MC, Helinski MEH, Kimura M, Deewathanawong P, Wolfner MF, Harrington LC, 2011. Towards a semen proteome of the dengue vector mosquito: protein identification and potential functions. Plos Negl Trop Dis 5 : e989.

    • Search Google Scholar
    • Export Citation
  • 47.

    Helinski MEH, Harrington LC, 2011. Male mating history and body size influence female fecundity and longevity of the dengue vector Aedes aegypti. J Med Entomol 48 : 202211.

    • Search Google Scholar
    • Export Citation
  • 48.

    Arnqvist G, Rowe L, 2005. Sexual Conflict. Princeton, NJ: Princeton University Press.

  • 49.

    Chapman T, 2006. Evolutionary conflicts of interest between males and females. Curr Biol 16 : 744754.

  • 50.

    Eberhard WG, 1996. Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ: Princeton University Press.

  • 51.

    Spielman A, Leahy SMG, Skaff V, 1967. Seminal loss in repeatedly mated female Aedes aegypti. Biol Bull 132 : 404412.

  • 52.

    Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, Beech C, Petrie WD, Alphey L, 2011. Field performance of engineered male mosquitoes. Nat Biotechnol 29 : 10341037.

    • Search Google Scholar
    • Export Citation
  • 53.

    Chambers EW, Hapairai L, Peel BA, Bossin H, Dobson SL, 2011. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions. PLoS Negl Trop Dis 5 : e1271.

    • Search Google Scholar
    • Export Citation
  • 54.

    Knipling EF, 1955. Possibilities of insect population control through the use of sexually sterile males. J Econ Entomol 48 : 459462.

    • Search Google Scholar
    • Export Citation
  • 55.

    Curtis CF, 1985. Genetic control of insect pests: growth industry or lead balloon. Biol J Linn Soc Lond 26 : 359374.

  • 56.

    Cator LJ, Arthur BJ, Harrington LC, Hoy RR, 2009. Harmonic convergence in the love songs of the dengue vector mosquito. Science 323 : 10771079.

    • Search Google Scholar
    • Export Citation
  • 57.

    Cator LJ, Harrington LC, 2011. The harmonic convergence of fathers predicts the mating success of sons in the yellow fever mosquito. Anim Behav 82 : 627633.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 418 149 2
PDF Downloads 109 32 4
 
 
 
 
 
 
 
 
 
 
 

Evidence of Polyandry for Aedes aegypti in Semifield Enclosures

Michelle E. H. HelinskiDepartment of Entomology, Cornell University, Ithaca, New York; Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, California; Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México

Search for other papers by Michelle E. H. Helinski in
Current site
Google Scholar
PubMed
Close
,
Laura ValerioDepartment of Entomology, Cornell University, Ithaca, New York; Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, California; Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México

Search for other papers by Laura Valerio in
Current site
Google Scholar
PubMed
Close
,
Luca FacchinelliDepartment of Entomology, Cornell University, Ithaca, New York; Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, California; Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México

Search for other papers by Luca Facchinelli in
Current site
Google Scholar
PubMed
Close
,
Thomas W. ScottDepartment of Entomology, Cornell University, Ithaca, New York; Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, California; Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México

Search for other papers by Thomas W. Scott in
Current site
Google Scholar
PubMed
Close
,
Janine RamseyDepartment of Entomology, Cornell University, Ithaca, New York; Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, California; Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México

Search for other papers by Janine Ramsey in
Current site
Google Scholar
PubMed
Close
, and
Laura C. HarringtonDepartment of Entomology, Cornell University, Ithaca, New York; Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, California; Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México

Search for other papers by Laura C. Harrington in
Current site
Google Scholar
PubMed
Close
View More View Less
Restricted access

Female Aedes aegypti are assumed to be primarily monandrous (i.e., mate only once in their lifetime), but true estimates of mating frequency have not been determined outside the laboratory. To assess polyandry in Ae. aegypti with first-generation progeny from wild mosquitoes, stable isotope semen-labeled males (15N or 13C) were allowed to mate with unlabeled females in semifield enclosures (22.5 m3) in a dengue-endemic area in southern Mexico. On average, 14% of females were positive for both labels, indicating that they received semen from more than one male. Our results provide evidence of a small but potentially significant rate of multiple mating within a 48-hour period and provide an approach for future open-field studies of polyandry in this species. Polyandry has implications for understanding mosquito ecology, evolution, and reproductive behavior as well as genetic strategies for mosquito control.

Author Notes

*Address correspondence to Michelle E. H. Helinski, 3131 Comstock Hall, Department of Entomology, Cornell University, Ithaca, NY 14853. E-mail: meh258@cornell.edu

Authors' addresses: Michelle E. H. Helinski and Laura C. Harrington, Department of Entomology, Cornell University, Ithaca, NY, E-mails: meh258@cornell.edu and lch27@cornel.edu. Laura Valerio, Pasteur Institute—Cenci Bolognetti Foundation, University of Rome “La Sapienza”, Rome, Italy; Department of Entomology, University of California, Davis, CA; and Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México, E-mail: lvalerio@ucdavis.edu. Luca Facchinelli, Department of Entomology, University of California, Davis, CA; and Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México, E-mail: lfacchinelli@ucdavis.edu. Thomas W. Scott, Department of Entomology, University of California, Davis, CA, E-mail: twscott@ucdavis.edu. Janine Ramsey, Centro Regional de Investigación de Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México, E-mail: jramsey@insp.mx.

Save