World Health Organization, 2010. Control of the Leishmaniases. Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, March 22–26, 2010. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf. Accessed March 16, 2011.
Lutz A, Neiva A, 1912. Contribuição para o conhecimento das espécies do gênero Phlebotomus no Brasil. Mem Inst Oswaldo Cruz 4 : 84– 95.
Michalsky EM, Rocha MF, Lima AC, França-Silva JC, Pires MQ, Oliveira FS, Pacheco RS, dos Santos SL, Barata RA, Romanha AJ, Fortes-Dias CL, Dias ES, 2007. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyia longipalpis phlebotominae sandflies. Vet Parasitol 147 : 67– 76.
Michalsky M, França-Silva JC, Barata RA, Lara-Silva FO, Loureiro AM, Fortes-Dias CL, Dias ES, 2009. Phlebotominae distribution in Janaúba, an area transmission for visceral leishmaniasis in Brazil. Mem Inst Oswaldo Cruz 104 : 56– 61.
Cerbino Neto J, Werneck GL, Costa CH, 2009. Factors associated to the incidence of urban visceral leishmaniasis: an ecologic study in Teresina, Brazil. Cad Saude Publica 25 : 1543– 1551.
Borovsky D, Schlein Y, 1987. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol 1 : 235– 242.
Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL, 1997. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sandfly midgut. Parasitol 115 : 359– 369.
Pimenta PF, Turco SJ, McConville M, Lawyer PG, Perkins PV, Sacks DL, 1992. Stage-specific adhesion of Leishmania promastigotes to sandfly midgut. Science 256 : 1812– 1815.
Kamhawi S, Ramalho-Ortigão M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barrillas-Mury C, Sacks DL, Valenzuela JG, 2004. A role for insect galectins in parasite. Cell 119 : 329– 341.
Pimenta PF, Saraiva EM, Rowton E, Modi GG, Garraway LA, Beverley SM, Turco S, Sacks DL, 1994. Evidence that the vectorial competence of phlebotomine sandflies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA 91 : 9155– 9159.
Sacks DL, Saraiva EM, Rowton E, Turco SJ, Pimenta PF, 1994. The role of lipophosphoglycan of Leishmania in vector competence. Parasitol 108 : 55– 62.
Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ, 1995. Stage-specific binding of Leishmania donovani to the sandfly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 181 : 685– 697.
Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Berveley SM, 2000. The role of phosphoglycans in Leishmania sandfly interations. Proc Natl Acad Sci USA 97 : 406– 411.
Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL, 1996. Deficiency in β1,3-galactosyltranferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sandfly interaction. J Biol Chem 271 : 20573– 20579.
Kamhawi S, 2000. The biological and immunomodulatory properties of sandfly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2 : 1765– 1773.
Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF, Turco SJ, 2002. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sandfly Lutzomyia longipalpis. Mol Biochem Parasitol 121 : 213– 224.
Soares RP, Margonari C, Secundino NF, Macedo ME, Costa SM, Rangel EF, Pimenta PF, Turco SJ, 2010. Differential midgut attachment of Leishmania (Viannia) braziliensis in the sandflies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. J Biomed Biotechnol 2010: 439174.
Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF, Pimenta PF, Turco SJ, Soares RP, 2011. Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol 41 : 333– 342.
Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR, 1990. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43 : 31– 43.
Sacks DL, 1989. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 69 : 100– 103.
Rogers ME, Chance ML, Bates PA, 2002. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitol 124 : 498– 507.
Sacks DL, Lawyer P, Kamhawi S, 2008. The biology of Leishmania-sandfly interactions. Myler P, Fasel N, eds. Leishmania: After the Genome. Norfolk, United Kingdom: Caister Academic Press, 205– 238.
Lainson R, Shaw JJ, 1988. Observations on the development of Leishmania (L.) chagasi Cunha and Chagas in the midgut of the sandfly vector Lutzomyia longipalpis (Lutz and Neiva). Ann Parasitol Hum Comp 63 : 134– 145.
Walters LL, Modi GB, Chaplin GL, Tesh RB, 1989. Ultrastructural development of Leishmania chagasi in its vector Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 41 : 259– 317.
Nieves E, Pimenta PF, 2000. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sandfly Lutzomyia migonei (Diptera: Psycodidae). J Med Entomol 37 : 134– 140.
Nieves E, Pimenta PF, 2002. Influence of vertebrate blood meals on the development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sandfly Lutzomyia migonei (Diptera: Psychodidae). Am J Trop Med Hyg 67 : 640– 647.
Miranda JC, Secundino NF, Nieves E, Souza AP, Bahia-Nascimento AC, Prates DB, Pimenta RN, Pinto LC, Barral A, Pimenta PF, 2008. Studies of the influence of the presence of domestic animals on increasing the transmission probabilities of leishmaniasis. Ann Med Entomol 17 : 9– 15.
Zilberstein D, Shapira M, 1994. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48 : 449– 470.
Saar Y, Ransford A, Waldman E, Mazareb S, Amim-Spector S, Plumblee J, Turco S, Ziberstein D, 1998. Characterization of developmentally-regulated activities in amastigote of Leishmania donovani. Mol Biochem Parasitol 95 : 9– 20.
Debrabante A, Joshi MB, Pimenta PF, Dwyer DM, 2004. Generation of Leishmania donovani amastigotes: their growth and biological characteristics. Int J Parasitol 34 : 205– 217.
Dias Costa J, Soares R, Finkelstein LC, Corte-Real S, Meirelles MN, Porozzi R, 2009. Fast high yield of pure Leishmania (Leishmania) infantum axenic amastigotes and their infectivity to mouse macrophages. Parasitol Res 105 : 227– 236.
Tesh RB, Modi GB, 1984. A simple method for experimental infection of phlebotomine sandflies with Leishmania. Am J Trop Med Hyg 33 : 41– 46.
Saraiva EM, Pimenta PF, Brodin TN, Rowton E, Modi GB, Sacks DL, 1995. Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major on Phelebotomus papatasi. Parasitol 111 : 275– 287.
Charest H, Matlashewski G, 1994. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14 2975– 2984.
Pan AA, 1984. Leishmania mexicana: serial cultivation of intracellular stages in a cell-free medium. Exp Parasitol 58 : 72– 80.
Bates PA, Robertson CD, Tetley L, Coombs GH, 1992. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitol 105 : 193– 202.
Bates PA, 1994. The development biology of Leishmania promatigotes. Exp Parasitol 79 : 215– 218.
Doyle PS, Engel JC, Pimenta PFP, Da Silva PP, Dweyer DM, 1991. Leishmania donovani: long term culture of axenic amastigotes at 37°C. Exp Parasitol 73 : 326– 334.
Gupta N, Goyal N, Rastogi AK, 2001. In vitro cultivation and characterization of axenic amastigote of Leishmania. Trends Parasitol 17 : 150– 153.
Dillon RJ, Ivens AC, Churcher C, Holroyd N, Quail MA, Rogers ME, Soares MB, Bonaldo MF, Casavant TL, Lehane MJ, Bates PA, 2006. Analysis of ESTs from Lutzomyia longipalpis sandflies and their contribution toward understanding the insect-parasite relationship. Genomics 88 : 831– 840.
Telleria EZ, Pitaluga AN, Ortigão-Farias JR, Araújo APO, Ramalho Ortigão JM, Traub-Cseko YM, 2007. Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis. Arch Insect Biochem Physiol 66 : 53– 63.
Pitaluga AN, Beteille V, Lobo AR, Ortigão-Farias JR, Davila AMR, Souza AA, Ramalho-Ortigão JM, Traub-Cseko YN, 2009. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Mol Genet Genomics 282 : 307– 317.
Lehane MJ, 1997. Peritrophic matrix structure and function. Annu Rev Entomol 42 : 525– 550.
Schlein Y, Jacobson RL, Schlomai J, 1991. Chitinase secreted by Leishmania functions in the sandfly vector and implement parasite transmission by bite. Proc R Soc Lond 245 : 121– 126.
Ramalho-Ortigão JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG, Dwyer DM, Sacks DL, Valenzuela JG, 2005. Characterization of an activated chitinolytic system in the midgut of the sandfly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Mol Biol 14 : 703– 712.
Sacks DL, Perkins PV, 1985. Development of infective stage Leishmania promastigotes within phebotomine sandflies. Am J Trop Med Hyg 34 : 456– 459.
Warburg A, Schlein Y, 1986. The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. Am J Trop Med Hyg 35 : 926– 930.
Elnaeim DA, Ward RD, Young PE, 1994. Development of Leishmania chagasi (Kinetoplastida: Trypanosomatidae) in the second blood-meal of its vector Lutzomyia longipalpis (Diptera: Psychodidae). Parasitol Res 80 : 414– 419.
Gossage SM, Rogers ME, Bates PA, 2003. Two separate growth phases during the development of Leishmania in sandflies: implications for understanding the life cycle. Int J Parasitol 33 : 1027– 1034.
Bauzer LG, Souza NA, Maingon RD, Peixoto AA, 2007. Lutzomyia longipalpis in Brazil: a complex or a single species? A mini-review. Mem Inst Oswaldo Cruz 102 : 1– 12.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 191 | 148 | 6 |
Full Text Views | 476 | 6 | 0 |
PDF Downloads | 122 | 3 | 0 |
We analyzed the development of Leishmania (Leishmania) infantum chagasi in its natural sandfly vector Lutzomyia longipalpis. In addition, we compared sandfly infections initiated with axenic amastigotes or promastigotes. Our data showed no important difference between Lu. longipalpis infection rates resulting from either type of infections. Furthermore, development of infection was equivalent in both cases. All promastigote forms were found inside the sandfly and, after blood digestion, most of the population consisted of procyclics and nectomonads. A low percentage of metacyclic forms was coincident with a high number of nectomonads during late stages of infection, but which form gives rise to metacyclic forms in L. infantum chagasi is unknown. These results also show that the promastigote infection model, at least for this situation, is suitable for obtaining of infected sandflies because it is easier and less laborious.
Financial support: This study was supported by grants from Fundação Oswaldo Cruz (FIOCRUZ), Fundação de Amparo à Pesquisa do Estado de Minas Gerais, Conselho Nacional de Desenvolvimento Científico e Tecnológico), Programa Estratégico de Apoio à Pesquisa em Saúde of FIOCRUZ, and AMSURD (Pôle Amériques). Vanessa C. Freitas is supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais FAPEMIG (process 00260/09).
Authors' addresses: Vanessa C. Freitas, Klívia P. Parreiras, Ana Paula M. Duarte, Nágila F. C. Secundino, and Paulo F. P. Pimenta, Laboratory of Medical Entomology, Centro de Pesquisas René Rachou, Fundação, Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil, E-mails: vanesfreitas@cpqrr.fiocruz.br, klivia_paty@hotmail.com, apduarte@cpqrr.fiocruz.br, nagila@cpqrr.fiocruz.br, and pimenta@cpqrr.fiocruz.br.
World Health Organization, 2010. Control of the Leishmaniases. Report of a Meeting of the WHO Expert Committee on the Control of Leishmaniases, Geneva, March 22–26, 2010. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_949_eng.pdf. Accessed March 16, 2011.
Lutz A, Neiva A, 1912. Contribuição para o conhecimento das espécies do gênero Phlebotomus no Brasil. Mem Inst Oswaldo Cruz 4 : 84– 95.
Michalsky EM, Rocha MF, Lima AC, França-Silva JC, Pires MQ, Oliveira FS, Pacheco RS, dos Santos SL, Barata RA, Romanha AJ, Fortes-Dias CL, Dias ES, 2007. Infectivity of seropositive dogs, showing different clinical forms of leishmaniasis, to Lutzomyia longipalpis phlebotominae sandflies. Vet Parasitol 147 : 67– 76.
Michalsky M, França-Silva JC, Barata RA, Lara-Silva FO, Loureiro AM, Fortes-Dias CL, Dias ES, 2009. Phlebotominae distribution in Janaúba, an area transmission for visceral leishmaniasis in Brazil. Mem Inst Oswaldo Cruz 104 : 56– 61.
Cerbino Neto J, Werneck GL, Costa CH, 2009. Factors associated to the incidence of urban visceral leishmaniasis: an ecologic study in Teresina, Brazil. Cad Saude Publica 25 : 1543– 1551.
Borovsky D, Schlein Y, 1987. Trypsin and chymotrypsin-like enzymes of the sandfly Phlebotomus papatasi infected with Leishmania and their possible role in vector competence. Med Vet Entomol 1 : 235– 242.
Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL, 1997. A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sandfly midgut. Parasitol 115 : 359– 369.
Pimenta PF, Turco SJ, McConville M, Lawyer PG, Perkins PV, Sacks DL, 1992. Stage-specific adhesion of Leishmania promastigotes to sandfly midgut. Science 256 : 1812– 1815.
Kamhawi S, Ramalho-Ortigão M, Pham VM, Kumar S, Lawyer PG, Turco SJ, Barrillas-Mury C, Sacks DL, Valenzuela JG, 2004. A role for insect galectins in parasite. Cell 119 : 329– 341.
Pimenta PF, Saraiva EM, Rowton E, Modi GG, Garraway LA, Beverley SM, Turco S, Sacks DL, 1994. Evidence that the vectorial competence of phlebotomine sandflies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc Natl Acad Sci USA 91 : 9155– 9159.
Sacks DL, Saraiva EM, Rowton E, Turco SJ, Pimenta PF, 1994. The role of lipophosphoglycan of Leishmania in vector competence. Parasitol 108 : 55– 62.
Sacks DL, Pimenta PF, McConville MJ, Schneider P, Turco SJ, 1995. Stage-specific binding of Leishmania donovani to the sandfly vector midgut is regulated by conformational changes in the abundant surface lipophosphoglycan. J Exp Med 181 : 685– 697.
Sacks DL, Modi G, Rowton E, Spath G, Epstein L, Turco SJ, Berveley SM, 2000. The role of phosphoglycans in Leishmania sandfly interations. Proc Natl Acad Sci USA 97 : 406– 411.
Butcher BA, Turco SJ, Hilty BA, Pimenta PF, Panunzio M, Sacks DL, 1996. Deficiency in β1,3-galactosyltranferase of a Leishmania major lipophosphoglycan mutant adversely influences the Leishmania-sandfly interaction. J Biol Chem 271 : 20573– 20579.
Kamhawi S, 2000. The biological and immunomodulatory properties of sandfly saliva and its role in the establishment of Leishmania infections. Microbes Infect 2 : 1765– 1773.
Soares RP, Macedo ME, Ropert C, Gontijo NF, Almeida IC, Gazzinelli RT, Pimenta PF, Turco SJ, 2002. Leishmania chagasi: lipophosphoglycan characterization and binding to the midgut of the sandfly Lutzomyia longipalpis. Mol Biochem Parasitol 121 : 213– 224.
Soares RP, Margonari C, Secundino NF, Macedo ME, Costa SM, Rangel EF, Pimenta PF, Turco SJ, 2010. Differential midgut attachment of Leishmania (Viannia) braziliensis in the sandflies Lutzomyia (Nyssomyia) whitmani and Lutzomyia (Nyssomyia) intermedia. J Biomed Biotechnol 2010: 439174.
Coelho-Finamore JM, Freitas VC, Assis RR, Melo MN, Novozhilova N, Secundino NF, Pimenta PF, Turco SJ, Soares RP, 2011. Leishmania infantum: lipophosphoglycan intraspecific variation and interaction with vertebrate and invertebrate hosts. Int J Parasitol 41 : 333– 342.
Lawyer PG, Ngumbi PM, Anjili CO, Odongo SO, Mebrahtu YB, Githure JI, Koech DK, Roberts CR, 1990. Development of Leishmania major in Phlebotomus duboscqi and Sergentomyia schwetzi (Diptera: Psychodidae). Am J Trop Med Hyg 43 : 31– 43.
Sacks DL, 1989. Metacyclogenesis in Leishmania promastigotes. Exp Parasitol 69 : 100– 103.
Rogers ME, Chance ML, Bates PA, 2002. The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitol 124 : 498– 507.
Sacks DL, Lawyer P, Kamhawi S, 2008. The biology of Leishmania-sandfly interactions. Myler P, Fasel N, eds. Leishmania: After the Genome. Norfolk, United Kingdom: Caister Academic Press, 205– 238.
Lainson R, Shaw JJ, 1988. Observations on the development of Leishmania (L.) chagasi Cunha and Chagas in the midgut of the sandfly vector Lutzomyia longipalpis (Lutz and Neiva). Ann Parasitol Hum Comp 63 : 134– 145.
Walters LL, Modi GB, Chaplin GL, Tesh RB, 1989. Ultrastructural development of Leishmania chagasi in its vector Lutzomyia longipalpis (Diptera: Psychodidae). Am J Trop Med Hyg 41 : 259– 317.
Nieves E, Pimenta PF, 2000. Development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sandfly Lutzomyia migonei (Diptera: Psycodidae). J Med Entomol 37 : 134– 140.
Nieves E, Pimenta PF, 2002. Influence of vertebrate blood meals on the development of Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis in the sandfly Lutzomyia migonei (Diptera: Psychodidae). Am J Trop Med Hyg 67 : 640– 647.
Miranda JC, Secundino NF, Nieves E, Souza AP, Bahia-Nascimento AC, Prates DB, Pimenta RN, Pinto LC, Barral A, Pimenta PF, 2008. Studies of the influence of the presence of domestic animals on increasing the transmission probabilities of leishmaniasis. Ann Med Entomol 17 : 9– 15.
Zilberstein D, Shapira M, 1994. The role of pH and temperature in the development of Leishmania parasites. Annu Rev Microbiol 48 : 449– 470.
Saar Y, Ransford A, Waldman E, Mazareb S, Amim-Spector S, Plumblee J, Turco S, Ziberstein D, 1998. Characterization of developmentally-regulated activities in amastigote of Leishmania donovani. Mol Biochem Parasitol 95 : 9– 20.
Debrabante A, Joshi MB, Pimenta PF, Dwyer DM, 2004. Generation of Leishmania donovani amastigotes: their growth and biological characteristics. Int J Parasitol 34 : 205– 217.
Dias Costa J, Soares R, Finkelstein LC, Corte-Real S, Meirelles MN, Porozzi R, 2009. Fast high yield of pure Leishmania (Leishmania) infantum axenic amastigotes and their infectivity to mouse macrophages. Parasitol Res 105 : 227– 236.
Tesh RB, Modi GB, 1984. A simple method for experimental infection of phlebotomine sandflies with Leishmania. Am J Trop Med Hyg 33 : 41– 46.
Saraiva EM, Pimenta PF, Brodin TN, Rowton E, Modi GB, Sacks DL, 1995. Changes in lipophosphoglycan and gene expression associated with the development of Leishmania major on Phelebotomus papatasi. Parasitol 111 : 275– 287.
Charest H, Matlashewski G, 1994. Developmental gene expression in Leishmania donovani: differential cloning and analysis of an amastigote-stage-specific gene. Mol Cell Biol 14 2975– 2984.
Pan AA, 1984. Leishmania mexicana: serial cultivation of intracellular stages in a cell-free medium. Exp Parasitol 58 : 72– 80.
Bates PA, Robertson CD, Tetley L, Coombs GH, 1992. Axenic cultivation and characterization of Leishmania mexicana amastigote-like forms. Parasitol 105 : 193– 202.
Bates PA, 1994. The development biology of Leishmania promatigotes. Exp Parasitol 79 : 215– 218.
Doyle PS, Engel JC, Pimenta PFP, Da Silva PP, Dweyer DM, 1991. Leishmania donovani: long term culture of axenic amastigotes at 37°C. Exp Parasitol 73 : 326– 334.
Gupta N, Goyal N, Rastogi AK, 2001. In vitro cultivation and characterization of axenic amastigote of Leishmania. Trends Parasitol 17 : 150– 153.
Dillon RJ, Ivens AC, Churcher C, Holroyd N, Quail MA, Rogers ME, Soares MB, Bonaldo MF, Casavant TL, Lehane MJ, Bates PA, 2006. Analysis of ESTs from Lutzomyia longipalpis sandflies and their contribution toward understanding the insect-parasite relationship. Genomics 88 : 831– 840.
Telleria EZ, Pitaluga AN, Ortigão-Farias JR, Araújo APO, Ramalho Ortigão JM, Traub-Cseko YM, 2007. Constitutive and blood meal-induced trypsin genes in Lutzomyia longipalpis. Arch Insect Biochem Physiol 66 : 53– 63.
Pitaluga AN, Beteille V, Lobo AR, Ortigão-Farias JR, Davila AMR, Souza AA, Ramalho-Ortigão JM, Traub-Cseko YN, 2009. EST sequencing of blood-fed and Leishmania-infected midgut of Lutzomyia longipalpis, the principal visceral leishmaniasis vector in the Americas. Mol Genet Genomics 282 : 307– 317.
Lehane MJ, 1997. Peritrophic matrix structure and function. Annu Rev Entomol 42 : 525– 550.
Schlein Y, Jacobson RL, Schlomai J, 1991. Chitinase secreted by Leishmania functions in the sandfly vector and implement parasite transmission by bite. Proc R Soc Lond 245 : 121– 126.
Ramalho-Ortigão JM, Kamhawi S, Joshi MB, Reynoso D, Lawyer PG, Dwyer DM, Sacks DL, Valenzuela JG, 2005. Characterization of an activated chitinolytic system in the midgut of the sandfly vectors Lutzomyia longipalpis and Phlebotomus papatasi. Insect Mol Biol 14 : 703– 712.
Sacks DL, Perkins PV, 1985. Development of infective stage Leishmania promastigotes within phebotomine sandflies. Am J Trop Med Hyg 34 : 456– 459.
Warburg A, Schlein Y, 1986. The effect of post-bloodmeal nutrition of Phlebotomus papatasi on the transmission of Leishmania major. Am J Trop Med Hyg 35 : 926– 930.
Elnaeim DA, Ward RD, Young PE, 1994. Development of Leishmania chagasi (Kinetoplastida: Trypanosomatidae) in the second blood-meal of its vector Lutzomyia longipalpis (Diptera: Psychodidae). Parasitol Res 80 : 414– 419.
Gossage SM, Rogers ME, Bates PA, 2003. Two separate growth phases during the development of Leishmania in sandflies: implications for understanding the life cycle. Int J Parasitol 33 : 1027– 1034.
Bauzer LG, Souza NA, Maingon RD, Peixoto AA, 2007. Lutzomyia longipalpis in Brazil: a complex or a single species? A mini-review. Mem Inst Oswaldo Cruz 102 : 1– 12.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 191 | 148 | 6 |
Full Text Views | 476 | 6 | 0 |
PDF Downloads | 122 | 3 | 0 |