Using Limes and Synthetic Psoralens to Enhance Solar Disinfection of Water (SODIS): A Laboratory Evaluation with Norovirus, Escherichia coli, and MS2

Alexander S. Harding The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health Engineering, and the Johns Hopkins Global Water Program, Baltimore, Maryland

Search for other papers by Alexander S. Harding in
Current site
Google Scholar
PubMed
Close
and
Kellogg J. Schwab The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health Engineering, and the Johns Hopkins Global Water Program, Baltimore, Maryland

Search for other papers by Kellogg J. Schwab in
Current site
Google Scholar
PubMed
Close
Restricted access

We investigated the use of psoralens and limes to enhance solar disinfection of water (SODIS) using an UV lamp and natural sunlight experiments. SODIS conditions were replicated using sunlight, 2 L polyethylene terephthalate (PET) bottles, and tap water with Escherichia coli, MS2 bacteriophage, and murine norovirus (MNV). Psoralens and lime acidity both interact synergistically with UV radiation to accelerate inactivation of microbes. Escherichia coli was ablated > 6.1 logs by SODIS + Lime Slurry and 5.6 logs by SODIS + Lime Juice in 30-minute solar exposures, compared with a 1.5 log reduction with SODIS alone (N = 3; P < 0.001). MS2 was inactivated > 3.9 logs by SODIS + Lime Slurry, 1.9 logs by SODIS + Lime Juice, and 1.4 logs by SODIS in 2.5-hour solar exposures (N = 3; P < 0.05). MNV was resistant to SODIS, with < 2 log reductions after 6 hours. Efficacy of SODIS against human norovirus should be investigated further.

Author Notes

*Address correspondence to Kellogg J. Schwab, Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health Engineering and the Johns Hopkins Global Water Program, 615 N. Wolfe St., Room E6620, Baltimore, MD 21205. E-mail: kschwab@jhsph.edu

Financial support: This research was supported in part by the Osprey Foundation of Maryland, the JHU Global Water Program, the JHU SOM Dean's Funding for Summer Research, and the JHU SOM Scholarly Concentrations.

Authors' addresses: Alexander S. Harding, The Johns Hopkins University School of Medicine, Baltimore, MD, E-mail: ahardin4@jhmi.edu. Kellogg J. Schwab, Johns Hopkins University Bloomberg School of Public Health, Department of Environmental Health Sciences, Division of Environmental Health Engineering and the Johns Hopkins Global Water Program, Baltimore, MD, E-mail: kschwab@jhsph.edu.

  • 1.

    WHO/UNICEF, 2009. Water for Life: Making It Happen. World Health Organization/UNICEF, France, 28.

  • 2.

    Stockholm International Water Institute, 2010. Stockholm Statement and Reflections on the MDG Summit. Available at: http://www.siwi.org/sa/node.asp?node=52&sa_content_url=%2Fplugins%2FResources%2Fresource.asp&id=232. Accessed May 14, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Rosa G, Clasen T, 2010. Estimating the scope of household water treatment in low- and medium-income countries. Am J Trop Med Hyg 82 : 289– 300.

  • 4.

    Clasen T, Haller L, Walker D, Bartram J, Cairncross S, 2007. Cost-effectiveness of water quality interventions for preventing diarrhoeal disease in developing countries. J Water Health 5 : 599– 608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    UNICEF, 2008. Promotion of Household Water Treatment and Safe Storage in UNICEF WASH Programmes. Available at: http://www.unicef.org/was. Accessed May 14, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    SODIS, an initiative of The Swiss Federal Institute of Aquatic Science and Technology, 2011. Available at: www.SODIS.ch. Accessed May 14, 2011.

    • PubMed
    • Export Citation
  • 7.

    Oates P, Shanahan P & Polz M 2003. Solar disinfection (SODIS): simulation of solar radiation for global assessment and application for point-of-use water treatment in Haiti. Water Res 37 : 47– 54.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Rainey R, Harding A, 2005. Drinking water quality and solar disinfection: effectiveness in peri-urban households in Nepal. J Water Health 3 : 239– 248.

  • 9.

    Du Preez M, Mcguigan KG, Conroy RM, 2010. Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: the role of participant motivation. Environ Sci Technol 44 : 8744– 8749.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Acra A, Karahagopian Y, Raffoul Z, Dajani R, 1980. Disinfection of oral rehydration solutions by sunlight. Lancet 2 : 1257– 1258.

  • 11.

    Madronich S, Flocke S, 1997. Zerefos C, Bais A, eds. Solar Ultraviolet Radiation: Modelling, Measurement, and Effects. Berlin: Springer, 23.

  • 12.

    Wegelin M, Canonica S, Fleischmann T, Pesaro F, Metzler A, 1994. Solar water disinfection: scope of the process and analysis of radiation experiments. J Water SRT-Aqua 43 : 154– 169.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Reed R, 1997. Solar inactivation of fecal bacteria in water: the critical role of oxygen. Lett Appl Microbiol 24 : 276– 280.

  • 14.

    Abele Oeschger D, Tug H, Rottgers R, 1997. Dynamics of UV-driven hydrogen peroxide formation on an intertidal sand flat. Limnol Oceanogr 42 : 1406– 1415.

  • 15.

    Jagger J, 1967. Introduction to Research in Ultraviolet Photobiology. New Jersey: Prentice-Hall, 114.

  • 16.

    Heaselgrave W, Kilvington S, 2010. Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol 76 : 6010– 6012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Dunlop P, Byrne J, Manga N, Eggins B, 2002. The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobiol B 148 : 355– 363.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Gelover S, Gomez L, Reyes K, Leal M, 2006. A practical demonstration of water disinfection using TiO2 films and sunlight. Water Res 40 : 3274– 3280.

  • 19.

    Sciacca F, Rengifo-Herrera J, Wethe J, Pulgarin C, 2010. Dramatic enhancement of solar disinfection (SODIS) of wild Salmonella spp. in PET bottles by H2O2 addition on natural water in Burkina Faso containing dissolved iron. Chemosphere 78 : 1186– 1191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Spuhler D, Rengifo-Herrera J, Pulgarin C, 2010. The effect of Fe2+, Fe3+, H2O2 and the photo-Fenton reagent at near neutral pH on the solar disinfection (SODIS) at low temperatures of water containing Escherichia coli K12. Appl Catal B 96 : 126– 141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fisher M, Keenan C, Nelson K, Voelker B, 2008. Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. J Water Health 6 : 35– 51.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Wollowitz S, 2001. Fundamentals of the psoralen-based Helinx technology for inactivation of infectious pathogens and leukocytes in platelets and plasma. Semin Hematol 38 : 4– 11.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lin L, Wiesehahn G, Morel P, Corash L, 1989. Use of 8-Methoxypsoralen and long-wavelength ultraviolet radiation for platelet decontamination. Blood 74 : 517– 525.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Parrish J, 1976. Photochemotherapy of psoriasis. Arch Dermatol 112 : 35– 36.

  • 25.

    Dall'Acqua F, Marciani S, Vedaldi D, Rodighiero G, 1974. Studies on the photoreactions (365 nm) between DNA and some methylpsoralens. Biochim Biophys Acta 353 : 267– 273.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Scott B, Pathak M, Mohn G, 1976. Molecular and genetic basis of furocoumarin reactions. Mutat Res 39 : 29– 74.

  • 27.

    Cole R, 1970. Light-induced cross-linking of DNA in the presence of furocoumarin (psoralen). Biochim Biophys Acta 217 : 30– 39.

  • 28.

    Schuler M, 1996. The role of Cytochrome P450 monooxygenases in plant-insect interactions. Plant Physiol 112 : 1411– 1419.

  • 29.

    Pathak M, Daniels F, Fitzpatrick T, 1962. The presently known distribution of furocoumarins (psoralens) in plants. J Invest Dermatol 1 : 225– 239.

  • 30.

    Gorgus E, Lohr C, Raquet N, Guth S, Schrenk D, 2010. Limettin and furocoumarins in beverages containing citrus juices or extracts. Food Chem Toxicol 48 : 93– 98.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rowe AK, Angulo FJ, Tauxe RV, 1998. A lime in a litre rapidly kills toxogenic Vibrio cholerae O1. Trop Doct 28 : 247– 248.

  • 32.

    Rodrigues A, Sandstrom A, Ca T, Steinsland H, Jensen H, Aaby P, 2000. Protection from cholera by adding lime juice to food-results from community and laboratory studies in Guinea-Bissau, West Africa. Trop Med Int Health 5 : 418– 422.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ulate-Rodriguez J, Schafer H, Zottola E, Davidson P, 1997. Inhibition of Listeria monocytogenes, Escherichia coli O157:H7, and Micrococcus luteus by linear furanocoumarins in a model food system. J Food Prot 60 : 1050– 1054.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Wegelin M, Canonica S, Alder A, Marazuela D, Suter M, Bucheli T, Haefliger O, Zenobi R, McGuigan K, Kelly M, Ibrahim P, Larroque M, 2001. Does sunlight change the material and content of polyethylene terephthalate (PET) bottles? J Water SRT-Aqua 5 : 125– 133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dawson DJ, Paish A, Staffell LM, Seymour IJ, Appleton H, 2005. Survival of viruses on fresh produce, using MS2 as a surrogate for norovirus. J Appl Microbiol 98 : 203– 209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Wobus CE, Thackray LB, Virgin HW IV, 2006. Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80 : 5104– 5112.

  • 37.

    Love D, Silverman A, Nelson K, 2010. Human virus and bacteriophage inactivation in clear water by simulated sunlight compared to bacteriophage inactivation at a southern California beach. Environ Sci Technol 44 : 6965– 6970.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Heaselgrave W, Patel N, Kilvington S, Kehoe SC, McGuigan KG, 2006. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water–a laboratory study using simulated sunlight. Adv Appl Microbiol 43 : 125– 130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Carey-Walker D, Len SV, Sheehan B, 2004. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water. Appl Environ Microbiol 70 : 2545– 2550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Berney M, Weilenmann HU, Ihssen J, Bassin C, Egli T, 2006. Specific growth rate determines the sensitivity of Escherichia coli to thermal, UVA and solar disinfection. Appl Environ Microbiol 72 : 2586– 2593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bae J, Schwab K, 2008. Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model for viral persistence in surface water and groundwater. Appl Environ Microbiol 74 : 477– 484.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Gibson KE, Schwab KJ, 2011. Tangential-flow ultrafiltration with integrated inhibition detection for recovery of surrogates and human pathogens from large-volume source water and finished drinking water. Appl Environ Microbiol 77 : 385– 391.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Eaton A, 2005. Standard Methods for the Examination of Water and Waste Water. Washington, DC: American Public Health Association Washington.

  • 44.

    Sichel C, Tello J, de Cara M, Fernández-Ibáñez P, 2007. Effect of UV solar intensity and dose on the photocatalytic disinfection of bacteria and fungi. Catal Today 129 : 152– 216.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Wagstaff D, 1991. Dietary exposure to furocoumarins. Regul Toxicol Pharmacol 14 : 261– 272.

  • 46.

    Stanley W, Vannier S, 1967. Psoralens and substituted coumarins from the expressed oil of lime. Phytochemistry 6 : 585– 596.

  • 47.

    Cannon J, Papafragkou E, Park G, Osborne J, Jaykus L, Vinje J, 2006. Surrogates for the study of norovirus stability and inactivation in the environment: a comparison on murine norovirus and feline calicivirus. J Food Prot 69 : 2761– 2765.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Hewitt J, Rivera-Aban M, Greening G, 2009. Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies. J Appl Microbiol 107 : 65– 71.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Nappier S, Graczyk T, Schwab K, 2008. Bioaccumulation, retention, and depuration of enteric viruses by Crassotrea virginica and Crassotrea ariakensis oysters. Appl Environ Microbiol 74 : 6825– 6831.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Minh Tu N, Thanh L, Une A, Ukeda H, Sawamura M, 2002. Volatile components of Vietnamese pummelo, orange, tangerine, and lime peel oils. Flavour Fragrance J 17 : 169– 174.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Wattenberg L, Coccia J, 1991. Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone carcinogenesis in mice by D-limonene and citrus fruit oils. Carcinogenesis 12 : 115– 117.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Inouye S, Takizawa T, Yamaguchi H, 2001. Antibacterial activity of the essential oils and their major constituents against upper respiratory tract infections by gaseous contact. J Antimicrob Chemother 47 : 565– 573.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Duke J, 2011. Dr. Duke's Phytochemical and Ethnobotanical Database. Available at: http://www.ars-grin.gov/duke. Accessed February 17, 2011.

  • 54.

    Rincon AG, Pulgarin C, 2004. Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: implications in solar water disinfection. Appl Catal B 51 : 283– 300.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 371 206 18
Full Text Views 512 8 1
PDF Downloads 219 5 1
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save