World Health Organization, 2002. The World Health Report 2002—Reducing Risks, Promoting Healthy Life. Available at: http://www.who.int/whr/2002/en/. Accessed May 18, 2011.
Ashbolt NJ, 2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198: 229–238.
World Health Organization, 2007. Combating Waterborne Disease at the Household Level. Geneva, Switzerland: World Health Organization, 35.
Boschi-Pinto C, Velebit L, Shibuya K, 2008. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ 86 710–717.
Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 2011. Solar water disinfection: the method. Available at: http://www.sodis.ch/methode/index_EN. Accessed June 20, 2011.
Kehoe SC, Barer MR, Devlin LO, McGuigan KG, 2004. Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I. Lett Appl Microbiol 38: 410–414.
Berney M, Weilenmann HU, Simonetti A, Egli T, 2006. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae. J Appl Microbiol 101: 828–836.
Heaselgrave W, Patel N, Kilvington S, Kehoe SC, McGuigan KG, 2006. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water—a laboratory study using simulated sunlight. Lett Appl Microbiol 43: 125–130.
McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA, 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101: 453–463.
Boyle M, Sichel C, Fernández-Ibáñez P, Arias-Quiroz GB, Iriarte-Puna M, Mercado A, Ubomba-Jaswa E, McGuigan KG, 2008. Bactericidal effect of solar water disinfection under real sunlight conditions. Appl Environ Microbiol 74: 2997–3001.
Heaselgrave W, Kilvington S, 2010. Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol 76: 6010–6012.
Heaselgrave W, Kilvington S, 2011. The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium. Acta Trop 119: 138–143.
Conroy RM, Elmore-Meegan M, Joyce T, McGuigan KG, Barnes J, 1996. Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial. Lancet 348: 1695–1697.
Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, 1999. Solar disinfection of water reduces diarrhoeal disease: an update. Arch Dis Child 81: 337–338.
Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, 2001. Solar disinfection of drinking water protects against cholera in children under 6 years of age. Arch Dis Child 85: 293–295.
Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, Abraham S, Muliyil J, Joseph A, Kang G, 2006. Solar disinfection of water for diarrhoeal prevention in southern India. Arch Dis Child 91: 139–141.
Du Preez M, McGuigan KG, Conroy RM, 2010. Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: the role of participant motivation. Environ Sci Technol 44: 8744–8749.
Altherr AM, Mosler HJ, Tobias R, Butera F, 2008. Attitudinal and relational factors predicting the use of solar water disinfection: a field study in Nicaragua. Health Educ Behav 35: 207–220.
Walker DC, Len SV, Sheehan B, 2004. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water. Appl Environ Microbiol 70: 2545–2550.
Navntoft C, Ubomba-Jaswa E, McGuigan KG, Fernández-Ibáñez P, 2008. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: natural well-water and solar light. J Photochem Photobiol B 93: 155–161.
Fayer R, 2004. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126: 37–56.
Gómez-Couso H, Fontán-Sainz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás E, 2009. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Trop Med Int Health 14: 620–627.
Kilani RT, Sekla L, 1987. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. Am J Trop Med Hyg 36: 505–508.
Lorenzo-Lorenzo MJ, Ares-Mazás ME, Villacorta-Martínez de Maturana I, Durán-Oreiro D, 1993. Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. J Parasitol 79: 67–70.
Amar CF, Dear PH, McLauchlin J, 2004. Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Lett Appl Microbiol 38: 217–222.
Patrick EAF, 1980. Soils: Their Formation, Classification and Distribution. London, United Kingdom: Longman, 353.
Ubomba-Jaswa E, Fernández-Ibáñez P, Navntoft C, Polo-López MI, McGuigan KG, 2010. Investigating the microbial inactivation of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. J Chem Technol Biotechnol 85: 1028–1037.
Campbell AT, Robertson LJ, Smith HV, 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58: 3488–3493.
Dowd SE, Pillai SD, 1997. A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Can J Microbiol 43: 658–662.
Gómez-Couso H, Fontán-Sainz M, Ares-Mazás E, 2010. Thermal contribution to the inactivation of Cryptosporidium in plastic bottles during solar water disinfection procedures. Am J Trop Med Hyg 82: 35–39.
Kehoe SC, Joyce TM, Ibrahim P, Gillespie JB, Shahar RA, McGuigan KG, 2001. Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors. Water Res 35: 1061–1065.
Peng X, Murphy T, Holden NM, 2008. Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl Environ Microbiol 74: 7101–7107.
Smith HV, Nichols RA, Grimason AM, 2005. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol 21: 133–142.
Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA, 2008. Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol 42: 4261–4267.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 472 | 81 | 14 |
Full Text Views | 321 | 7 | 0 |
PDF Downloads | 100 | 6 | 0 |
Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower (P < 0.05) that the initial global viability of the isolate (92.1 ± 0.9%). The 25-L static solar reactor that was evaluated can be an alternative system to the conventional solar water disinfection process for improving the microbiological quality of drinking water on a household level, and moreover, it enables treatment of larger volumes of water (> 10 times).
Financial support: This study was funded by European Union Grant No. FP6-INCO-CT-2006-031650-SODISWATER. H.G.-C. was funded by the University of Santiago de Compostela through the Angeles Alvariño Programme (Xunta de Galicia, Government of the Autonomous Region of Galicia). The authors are also grateful to the Ministerio de Ciencia e Innovación (Spain) for financing stays at the Plataforma Solar de Almería (by M.F.-S. and E.A.-M.) through the Programme of Access to the Plataforma Solar de Almería.
Authors’ addresses: María Fontán-Sainz, Hipólito Gómez-Couso, and Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Universitario Sur, A Coruña, Spain, E-mails: maria.fontan@usc.es, hipolito.gomez@usc.es, and melvira.ares@usc.es. Pilar Fernández Ibáñez, Plataforma Solar de Almería-CIEMAT, Tabernas, Almería, Spain, E-mail: pilar.fernandez@psa.es.
Reprint requests: Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain, E-mail: melvira.ares@usc.es.
World Health Organization, 2002. The World Health Report 2002—Reducing Risks, Promoting Healthy Life. Available at: http://www.who.int/whr/2002/en/. Accessed May 18, 2011.
Ashbolt NJ, 2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198: 229–238.
World Health Organization, 2007. Combating Waterborne Disease at the Household Level. Geneva, Switzerland: World Health Organization, 35.
Boschi-Pinto C, Velebit L, Shibuya K, 2008. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ 86 710–717.
Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 2011. Solar water disinfection: the method. Available at: http://www.sodis.ch/methode/index_EN. Accessed June 20, 2011.
Kehoe SC, Barer MR, Devlin LO, McGuigan KG, 2004. Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I. Lett Appl Microbiol 38: 410–414.
Berney M, Weilenmann HU, Simonetti A, Egli T, 2006. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae. J Appl Microbiol 101: 828–836.
Heaselgrave W, Patel N, Kilvington S, Kehoe SC, McGuigan KG, 2006. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water—a laboratory study using simulated sunlight. Lett Appl Microbiol 43: 125–130.
McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA, 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101: 453–463.
Boyle M, Sichel C, Fernández-Ibáñez P, Arias-Quiroz GB, Iriarte-Puna M, Mercado A, Ubomba-Jaswa E, McGuigan KG, 2008. Bactericidal effect of solar water disinfection under real sunlight conditions. Appl Environ Microbiol 74: 2997–3001.
Heaselgrave W, Kilvington S, 2010. Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol 76: 6010–6012.
Heaselgrave W, Kilvington S, 2011. The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium. Acta Trop 119: 138–143.
Conroy RM, Elmore-Meegan M, Joyce T, McGuigan KG, Barnes J, 1996. Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial. Lancet 348: 1695–1697.
Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, 1999. Solar disinfection of water reduces diarrhoeal disease: an update. Arch Dis Child 81: 337–338.
Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, 2001. Solar disinfection of drinking water protects against cholera in children under 6 years of age. Arch Dis Child 85: 293–295.
Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, Abraham S, Muliyil J, Joseph A, Kang G, 2006. Solar disinfection of water for diarrhoeal prevention in southern India. Arch Dis Child 91: 139–141.
Du Preez M, McGuigan KG, Conroy RM, 2010. Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: the role of participant motivation. Environ Sci Technol 44: 8744–8749.
Altherr AM, Mosler HJ, Tobias R, Butera F, 2008. Attitudinal and relational factors predicting the use of solar water disinfection: a field study in Nicaragua. Health Educ Behav 35: 207–220.
Walker DC, Len SV, Sheehan B, 2004. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water. Appl Environ Microbiol 70: 2545–2550.
Navntoft C, Ubomba-Jaswa E, McGuigan KG, Fernández-Ibáñez P, 2008. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: natural well-water and solar light. J Photochem Photobiol B 93: 155–161.
Fayer R, 2004. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126: 37–56.
Gómez-Couso H, Fontán-Sainz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás E, 2009. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Trop Med Int Health 14: 620–627.
Kilani RT, Sekla L, 1987. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. Am J Trop Med Hyg 36: 505–508.
Lorenzo-Lorenzo MJ, Ares-Mazás ME, Villacorta-Martínez de Maturana I, Durán-Oreiro D, 1993. Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. J Parasitol 79: 67–70.
Amar CF, Dear PH, McLauchlin J, 2004. Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Lett Appl Microbiol 38: 217–222.
Patrick EAF, 1980. Soils: Their Formation, Classification and Distribution. London, United Kingdom: Longman, 353.
Ubomba-Jaswa E, Fernández-Ibáñez P, Navntoft C, Polo-López MI, McGuigan KG, 2010. Investigating the microbial inactivation of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. J Chem Technol Biotechnol 85: 1028–1037.
Campbell AT, Robertson LJ, Smith HV, 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58: 3488–3493.
Dowd SE, Pillai SD, 1997. A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Can J Microbiol 43: 658–662.
Gómez-Couso H, Fontán-Sainz M, Ares-Mazás E, 2010. Thermal contribution to the inactivation of Cryptosporidium in plastic bottles during solar water disinfection procedures. Am J Trop Med Hyg 82: 35–39.
Kehoe SC, Joyce TM, Ibrahim P, Gillespie JB, Shahar RA, McGuigan KG, 2001. Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors. Water Res 35: 1061–1065.
Peng X, Murphy T, Holden NM, 2008. Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl Environ Microbiol 74: 7101–7107.
Smith HV, Nichols RA, Grimason AM, 2005. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol 21: 133–142.
Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA, 2008. Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol 42: 4261–4267.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 472 | 81 | 14 |
Full Text Views | 321 | 7 | 0 |
PDF Downloads | 100 | 6 | 0 |