Evaluation of the Solar Water Disinfection Process (SODIS) Against Cryptosporidium parvum Using a 25-L Static Solar Reactor Fitted with a Compound Parabolic Collector (CPC)

María Fontán-Sainz Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Plataforma Solar de Almería-Centro de Investigaciones Energéticas, Medioambientales y Tecnol?gicas (CIEMAT), Tabernas, Almería, Spain

Search for other papers by María Fontán-Sainz in
Current site
Google Scholar
PubMed
Close
,
Hipólito Gómez-Couso Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Plataforma Solar de Almería-Centro de Investigaciones Energéticas, Medioambientales y Tecnol?gicas (CIEMAT), Tabernas, Almería, Spain

Search for other papers by Hipólito Gómez-Couso in
Current site
Google Scholar
PubMed
Close
,
Pilar Fernández-Ibáñez Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Plataforma Solar de Almería-Centro de Investigaciones Energéticas, Medioambientales y Tecnol?gicas (CIEMAT), Tabernas, Almería, Spain

Search for other papers by Pilar Fernández-Ibáñez in
Current site
Google Scholar
PubMed
Close
, and
Elvira Ares-Mazás Laboratorio de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Plataforma Solar de Almería-Centro de Investigaciones Energéticas, Medioambientales y Tecnol?gicas (CIEMAT), Tabernas, Almería, Spain

Search for other papers by Elvira Ares-Mazás in
Current site
Google Scholar
PubMed
Close
Restricted access

Water samples of 0, 5, and 30 nephelometric turbidity units (NTU) spiked with Cryptosporidium parvum oocysts were exposed to natural sunlight using a 25-L static solar reactor fitted with a compound parabolic collector (CPC). The global oocyst viability was calculated by the evaluation of the inclusion/exclusion of the fluorogenic vital dye propidium iodide and the spontaneous excystation. After an exposure time of 8 hours, the global oocyst viabilities were 21.8 ± 3.1%, 31.3 ± 12.9%, and 45.0 ± 10.0% for turbidity levels of 0, 5, and 30 NTU, respectively, and these values were significantly lower (P < 0.05) that the initial global viability of the isolate (92.1 ± 0.9%). The 25-L static solar reactor that was evaluated can be an alternative system to the conventional solar water disinfection process for improving the microbiological quality of drinking water on a household level, and moreover, it enables treatment of larger volumes of water (> 10 times).

Author Notes

*Address correspondence to Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Universitario Sur, 15782 Santiago de Compostela, A Coruña, Spain. E-mail: melvira.ares@usc.es

Financial support: This study was funded by European Union Grant No. FP6-INCO-CT-2006-031650-SODISWATER. H.G.-C. was funded by the University of Santiago de Compostela through the Angeles Alvariño Programme (Xunta de Galicia, Government of the Autonomous Region of Galicia). The authors are also grateful to the Ministerio de Ciencia e Innovación (Spain) for financing stays at the Plataforma Solar de Almería (by M.F.-S. and E.A.-M.) through the Programme of Access to the Plataforma Solar de Almería.

Authors’ addresses: María Fontán-Sainz, Hipólito Gómez-Couso, and Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Universitario Sur, A Coruña, Spain, E-mails: maria.fontan@usc.es, hipolito.gomez@usc.es, and melvira.ares@usc.es. Pilar Fernández Ibáñez, Plataforma Solar de Almería-CIEMAT, Tabernas, Almería, Spain, E-mail: pilar.fernandez@psa.es.

Reprint requests: Elvira Ares-Mazás, Laboratorio de Parasitología, Facultad de Farmacia, Campus Vida, 15782 Santiago de Compostela, A Coruña, Spain, E-mail: melvira.ares@usc.es.

  • 1.

    World Health Organization, 2002. The World Health Report 2002—Reducing Risks, Promoting Healthy Life. Available at: http://www.who.int/whr/2002/en/. Accessed May 18, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Ashbolt NJ, 2004. Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology 198: 229238.

  • 3.

    World Health Organization, 2007. Combating Waterborne Disease at the Household Level. Geneva, Switzerland: World Health Organization, 35.

  • 4.

    Boschi-Pinto C, Velebit L, Shibuya K, 2008. Estimating child mortality due to diarrhoea in developing countries. Bull World Health Organ 86 710717.

  • 5.

    Swiss Federal Institute of Aquatic Science and Technology (EAWAG), 2011. Solar water disinfection: the method. Available at: http://www.sodis.ch/methode/index_EN. Accessed June 20, 2011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Kehoe SC, Barer MR, Devlin LO, McGuigan KG, 2004. Batch process solar disinfection is an efficient means of disinfecting drinking water contaminated with Shigella dysenteriae type I. Lett Appl Microbiol 38: 410414.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Berney M, Weilenmann HU, Simonetti A, Egli T, 2006. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae. J Appl Microbiol 101: 828836.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Heaselgrave W, Patel N, Kilvington S, Kehoe SC, McGuigan KG, 2006. Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water—a laboratory study using simulated sunlight. Lett Appl Microbiol 43: 125130.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    McGuigan KG, Méndez-Hermida F, Castro-Hermida JA, Ares-Mazás E, Kehoe SC, Boyle M, Sichel C, Fernández-Ibáñez P, Meyer BP, Ramalingham S, Meyer EA, 2006. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water. J Appl Microbiol 101: 453463.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Boyle M, Sichel C, Fernández-Ibáñez P, Arias-Quiroz GB, Iriarte-Puna M, Mercado A, Ubomba-Jaswa E, McGuigan KG, 2008. Bactericidal effect of solar water disinfection under real sunlight conditions. Appl Environ Microbiol 74: 29973001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Heaselgrave W, Kilvington S, 2010. Antimicrobial activity of simulated solar disinfection against bacterial, fungal, and protozoan pathogens and its enhancement by riboflavin. Appl Environ Microbiol 76: 60106012.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Heaselgrave W, Kilvington S, 2011. The efficacy of simulated solar disinfection (SODIS) against Ascaris, Giardia, Acanthamoeba, Naegleria, Entamoeba and Cryptosporidium. Acta Trop 119: 138143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Conroy RM, Elmore-Meegan M, Joyce T, McGuigan KG, Barnes J, 1996. Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial. Lancet 348: 16951697.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, 1999. Solar disinfection of water reduces diarrhoeal disease: an update. Arch Dis Child 81: 337338.

  • 15.

    Conroy RM, Meegan ME, Joyce T, McGuigan K, Barnes J, 2001. Solar disinfection of drinking water protects against cholera in children under 6 years of age. Arch Dis Child 85: 293295.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Rose A, Roy S, Abraham V, Holmgren G, George K, Balraj V, Abraham S, Muliyil J, Joseph A, Kang G, 2006. Solar disinfection of water for diarrhoeal prevention in southern India. Arch Dis Child 91: 139141.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Du Preez M, McGuigan KG, Conroy RM, 2010. Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: the role of participant motivation. Environ Sci Technol 44: 87448749.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Altherr AM, Mosler HJ, Tobias R, Butera F, 2008. Attitudinal and relational factors predicting the use of solar water disinfection: a field study in Nicaragua. Health Educ Behav 35: 207220.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Walker DC, Len SV, Sheehan B, 2004. Development and evaluation of a reflective solar disinfection pouch for treatment of drinking water. Appl Environ Microbiol 70: 25452550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Navntoft C, Ubomba-Jaswa E, McGuigan KG, Fernández-Ibáñez P, 2008. Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: natural well-water and solar light. J Photochem Photobiol B 93: 155161.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Fayer R, 2004. Cryptosporidium: a water-borne zoonotic parasite. Vet Parasitol 126: 3756.

  • 22.

    Gómez-Couso H, Fontán-Sainz M, Sichel C, Fernández-Ibáñez P, Ares-Mazás E, 2009. Efficacy of the solar water disinfection method in turbid waters experimentally contaminated with Cryptosporidium parvum oocysts under real field conditions. Trop Med Int Health 14: 620627.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kilani RT, Sekla L, 1987. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. Am J Trop Med Hyg 36: 505508.

  • 24.

    Lorenzo-Lorenzo MJ, Ares-Mazás ME, Villacorta-Martínez de Maturana I, Durán-Oreiro D, 1993. Effect of ultraviolet disinfection of drinking water on the viability of Cryptosporidium parvum oocysts. J Parasitol 79: 6770.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Amar CF, Dear PH, McLauchlin J, 2004. Detection and identification by real time PCR/RFLP analyses of Cryptosporidium species from human faeces. Lett Appl Microbiol 38: 217222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Patrick EAF, 1980. Soils: Their Formation, Classification and Distribution. London, United Kingdom: Longman, 353.

  • 27.

    Ubomba-Jaswa E, Fernández-Ibáñez P, Navntoft C, Polo-López MI, McGuigan KG, 2010. Investigating the microbial inactivation of a 25 L batch solar disinfection (SODIS) reactor enhanced with a compound parabolic collector (CPC) for household use. J Chem Technol Biotechnol 85: 10281037.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Campbell AT, Robertson LJ, Smith HV, 1992. Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58: 34883493.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Dowd SE, Pillai SD, 1997. A rapid viability assay for Cryptosporidium oocysts and Giardia cysts for use in conjunction with indirect fluorescent antibody detection. Can J Microbiol 43: 658662.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Gómez-Couso H, Fontán-Sainz M, Ares-Mazás E, 2010. Thermal contribution to the inactivation of Cryptosporidium in plastic bottles during solar water disinfection procedures. Am J Trop Med Hyg 82: 3539.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Kehoe SC, Joyce TM, Ibrahim P, Gillespie JB, Shahar RA, McGuigan KG, 2001. Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors. Water Res 35: 10611065.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Peng X, Murphy T, Holden NM, 2008. Evaluation of the effect of temperature on the die-off rate for Cryptosporidium parvum oocysts in water, soils, and feces. Appl Environ Microbiol 74: 71017107.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Smith HV, Nichols RA, Grimason AM, 2005. Cryptosporidium excystation and invasion: getting to the guts of the matter. Trends Parasitol 21: 133142.

  • 34.

    Sobsey MD, Stauber CE, Casanova LM, Brown JM, Elliott MA, 2008. Point of use household drinking water filtration: a practical, effective solution for providing sustained access to safe drinking water in the developing world. Environ Sci Technol 42: 42614267.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 472 81 14
Full Text Views 321 7 0
PDF Downloads 100 6 0
 
 
 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save