Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861–871.
Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344: 257–263.
Alifrangis M, Dalgaard MB, Lusingu JP, Vestergaard LS, Staalsoe T, Jensen AT, Enevold A, Ronn AM, Khalil IF, Warhurst DC, Lemnge MM, Theander TG, Bygbjerg IC, 2006. Occurrence of the Southeast Asian/South American SVMNT haplotype of the chloroquine-resistance transporter gene in Plasmodium falciparum in Tanzania. J Infect Dis 193: 1738–1741.
Chen N, Wilson DW, Pasay C, Bell D, Martin LB, Kyle D, Cheng Q, 2005. Origin and dissemination of chloroquine-resistant Plasmodium falciparum with mutant pfcrt alleles in the Philippines. Antimicrob Agents Chemother 49: 2102–2105.
Anderson TJ, Nair S, Qin H, Singlam S, Brockman A, Paiphun L, Nosten F, 2005. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother 49: 2180–2188.
Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LM, Jacobs-Lorena V, McNamara DT, Bockarie MJ, Kazura JW, Kyle DE, Fidock DA, Zimmerman PA, 2001. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci USA 98: 12689–12694.
Vieira PP, Ferreira MU, Alecrim MG, Alecrim WD, da Silva LH, Sihuincha MM, Joy DA, Mu J, Su XZ, Zalis MG, 2004. pfcrt polymorphism and the spread of chloroquine resistance in Plasmodium falciparum populations across the Amazon Basin. J Infect Dis 190: 417–424.
Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ, 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320–323.
Sidhu AB, Valderramos SG, Fidock DA, 2005. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57: 913–926.
Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA, 2006. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194: 528–535.
Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, 1990. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345: 255–258.
Valderramos SG, Fidock DA, 2006. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 27: 594–601.
Hayton K, Su XZ, 2004. Genetic and biochemical aspects of drug resistance in malaria parasites. Curr Drug Targets Infect Disord 4: 1–10.
Happi CT, Gbotosho GO, Folarin OA, Bolaji OM, Sowunmi A, Kyle DE, Milhous W, Wirth DF, Oduola AM, 2006. Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria. Am J Trop Med Hyg 75: 155–161.
Sowunmi A, Balogun T, Gbotosho GO, Happi CT, Adedeji AA, Fehintola FA, 2007. Activities of amodiaquine, artesunate, and artesunate-amodiaquine against asexual- and -sexual stage parasites in falciparum malaria in children. Antimicrob Agents Chemother 51: 1694–1699.
Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52: 565–568.
Gama EB, Perera-Carvalho GA, Kosi FJ, Oliveira NK, Fortes F, Rosenthal PJ, Ribeiro CT, Ferreira da Cruz M, 2010. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene. Malar J 9: 174.
Kremsner PG, Zotter GM, Grainger W, Feldmeier H, 1987. Amodiaquine-resistant malaria in Brazil. Lancet 2: 684.
Sa JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, Wellems TE, 2009. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA 106: 18883–18889.
Sa JM, Twu O, 2010. Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type. Malar J 9: 374.
Wellems TE, 2004. Transporter of a malaria catastrophe. Nat Med 10: 1169–1171.
Mehlotra RK, Mattera G, Bockarie MJ, Maguire JD, Baird JK, Sharma YD, Alifrangis M, Dorsey G, Rosenthal PJ, Fryauff DJ, Kazura JW, Stoneking M, Zimmerman PA, 2008. Discordant patterns of genetic variation at two chloroquine resistance loci in worldwide populations of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 52: 2212–2222.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2344 | 2251 | 51 |
Full Text Views | 346 | 13 | 0 |
PDF Downloads | 81 | 7 | 0 |
The effect of antimalarial drug selection on pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from two distinct geographical locations was determined in 70 and 18 P. falciparum isolates from Nigeria and Brazil, respectively, using nested polymerase chain reaction and direct DNA sequencing approaches. All isolates from Brazil and 72% from Nigeria harbored the mutant SVMNT and CVIET pfcrt haplotype, respectively. The pfcrt CVMNT haplotype was also observed in (7%) of the Nigerian samples. One hundred percent (100%) and 54% of the parasites from Brazil and Nigeria, respectively, harbored wild-type pfmdr1Asn86. We provide first evidence of emergence of the CVMNT haplotype in West Africa. The high prevalence of pfcrt CVIET and SVMNT haplotypes in Nigeria and Brazil, respectively, is indicative of different selective pressure by chloroquine and amodiaquine. Continuous monitoring of pfcrt SVMNT haplotype is required in endemic areas of Africa, where artesunate-amodiaquine combination is used for treatment of acute uncomplicated malaria.
Financial support: This study was supported by the NIH/Fogarty International Centre, The European Union Developing Countries Clinical Trial Partnership (EDCTP), the UNICEF/UNDP/World Bank/WHO/TDR, and the Multilateral Initiative for Malaria in Africa (MIM)/TDR. The Nigerian Government Postgraduate Scholarship supports Onikepe Folarin. Christian T. Happi is recipient of the Exxon-Mobil Corporation Malaria Leadership Award and is supported by the EDCTP Grant Award no. TA2007/40200016 for Senior Research Fellowship, the Fogarty International Research Collaboration Award (FIRCA) no. NIH RO3TW007757-03, and the UNICEF/UNDP/World Bank/WHO/TDR Grant ID A50337. Grace O. Gbotosho is supported by the MIM/TDR project ID A20239.
Authors' addresses: Grace O. Gbotosho, Onikepe A. Folarin, Akintunde Sowunmi, and Christian T. Happi, Malaria Research Laboratories, Institute of Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria, E-mails: solagbotosho@yahoo.co.uk, onikepefolarin@yahoo.com, akinsowunmi@hotmail.com, and christianhappi@hotmail.com. Carolina Bustamante and Mariano G. Zalis, Laboratory of Molecular Infectiology and Parasitology, Clementino Fraga Filho University Hospital, Rio de Janeiro, Brazil, E-mails: Carolina.bustamante@gmail.com and mgzalis@hucff.ufrj.br. Luis Hildebrando Pereira da Silva and Elieth Mesquita, Instituto de Pesquisa em Patologias Tropicais de Rondônia, Porto Velho, Brazil, E-mails: hildebrando.pereira@yahoo.com.br and eliethbio@hotmail.com. Ayoade M. J. Oduola, Strategic and Discovery Research, World Health Organization/Tropical Disease Research, Geneva, Switzerland, E-mail: oduolaa@who.int.
Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861–871.
Djimde A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourte Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344: 257–263.
Alifrangis M, Dalgaard MB, Lusingu JP, Vestergaard LS, Staalsoe T, Jensen AT, Enevold A, Ronn AM, Khalil IF, Warhurst DC, Lemnge MM, Theander TG, Bygbjerg IC, 2006. Occurrence of the Southeast Asian/South American SVMNT haplotype of the chloroquine-resistance transporter gene in Plasmodium falciparum in Tanzania. J Infect Dis 193: 1738–1741.
Chen N, Wilson DW, Pasay C, Bell D, Martin LB, Kyle D, Cheng Q, 2005. Origin and dissemination of chloroquine-resistant Plasmodium falciparum with mutant pfcrt alleles in the Philippines. Antimicrob Agents Chemother 49: 2102–2105.
Anderson TJ, Nair S, Qin H, Singlam S, Brockman A, Paiphun L, Nosten F, 2005. Are transporter genes other than the chloroquine resistance locus (pfcrt) and multidrug resistance gene (pfmdr) associated with antimalarial drug resistance? Antimicrob Agents Chemother 49: 2180–2188.
Mehlotra RK, Fujioka H, Roepe PD, Janneh O, Ursos LM, Jacobs-Lorena V, McNamara DT, Bockarie MJ, Kazura JW, Kyle DE, Fidock DA, Zimmerman PA, 2001. Evolution of a unique Plasmodium falciparum chloroquine-resistance phenotype in association with pfcrt polymorphism in Papua New Guinea and South America. Proc Natl Acad Sci USA 98: 12689–12694.
Vieira PP, Ferreira MU, Alecrim MG, Alecrim WD, da Silva LH, Sihuincha MM, Joy DA, Mu J, Su XZ, Zalis MG, 2004. pfcrt polymorphism and the spread of chloroquine resistance in Plasmodium falciparum populations across the Amazon Basin. J Infect Dis 190: 417–424.
Wootton JC, Feng X, Ferdig MT, Cooper RA, Mu J, Baruch DI, Magill AJ, Su XZ, 2002. Genetic diversity and chloroquine selective sweeps in Plasmodium falciparum. Nature 418: 320–323.
Sidhu AB, Valderramos SG, Fidock DA, 2005. pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. Mol Microbiol 57: 913–926.
Sidhu AB, Uhlemann AC, Valderramos SG, Valderramos JC, Krishna S, Fidock DA, 2006. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 194: 528–535.
Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, 1990. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum. Nature 345: 255–258.
Valderramos SG, Fidock DA, 2006. Transporters involved in resistance to antimalarial drugs. Trends Pharmacol Sci 27: 594–601.
Hayton K, Su XZ, 2004. Genetic and biochemical aspects of drug resistance in malaria parasites. Curr Drug Targets Infect Disord 4: 1–10.
Happi CT, Gbotosho GO, Folarin OA, Bolaji OM, Sowunmi A, Kyle DE, Milhous W, Wirth DF, Oduola AM, 2006. Association between mutations in Plasmodium falciparum chloroquine resistance transporter and P. falciparum multidrug resistance 1 genes and in vivo amodiaquine resistance in P. falciparum malaria-infected children in Nigeria. Am J Trop Med Hyg 75: 155–161.
Sowunmi A, Balogun T, Gbotosho GO, Happi CT, Adedeji AA, Fehintola FA, 2007. Activities of amodiaquine, artesunate, and artesunate-amodiaquine against asexual- and -sexual stage parasites in falciparum malaria in children. Antimicrob Agents Chemother 51: 1694–1699.
Plowe CV, Djimde A, Bouare M, Doumbo O, Wellems TE, 1995. Pyrimethamine and proguanil resistance conferring mutations in Plasmodium falciparum dihydrofolate reductase: polymerase chain reaction methods for surveillance in Africa. Am J Trop Med Hyg 52: 565–568.
Gama EB, Perera-Carvalho GA, Kosi FJ, Oliveira NK, Fortes F, Rosenthal PJ, Ribeiro CT, Ferreira da Cruz M, 2010. Plasmodium falciparum isolates from Angola show the StctVMNT haplotype in the pfcrt gene. Malar J 9: 174.
Kremsner PG, Zotter GM, Grainger W, Feldmeier H, 1987. Amodiaquine-resistant malaria in Brazil. Lancet 2: 684.
Sa JM, Twu O, Hayton K, Reyes S, Fay MP, Ringwald P, Wellems TE, 2009. Geographic patterns of Plasmodium falciparum drug resistance distinguished by differential responses to amodiaquine and chloroquine. Proc Natl Acad Sci USA 106: 18883–18889.
Sa JM, Twu O, 2010. Protecting the malaria drug arsenal: halting the rise and spread of amodiaquine resistance by monitoring the PfCRT SVMNT type. Malar J 9: 374.
Wellems TE, 2004. Transporter of a malaria catastrophe. Nat Med 10: 1169–1171.
Mehlotra RK, Mattera G, Bockarie MJ, Maguire JD, Baird JK, Sharma YD, Alifrangis M, Dorsey G, Rosenthal PJ, Fryauff DJ, Kazura JW, Stoneking M, Zimmerman PA, 2008. Discordant patterns of genetic variation at two chloroquine resistance loci in worldwide populations of the malaria parasite Plasmodium falciparum. Antimicrob Agents Chemother 52: 2212–2222.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 2344 | 2251 | 51 |
Full Text Views | 346 | 13 | 0 |
PDF Downloads | 81 | 7 | 0 |