• 1.

    Nanda N, Michel R, Kurdgelashvili G, Wendel K, 2006. Trichomoniasis and its treatment. Expert Rev Anti Infect Ther 4: 125135.

  • 2.

    Parsonson IM, Clark BL, Dufty JH, 1976. Early pathogenesis and pathology of Tritrichomonas foetus infection in virgin heifers. J Comp Pathol 86: 5966.

    • Search Google Scholar
    • Export Citation
  • 3.

    Rhyan JC, Stackhouse LL, Quinn WJ, 1988. Fetal and placental lesions in bovine abortion due to Tritrichomonas foetus. Vet Pathol 25: 350355.

  • 4.

    BonDurant RH, Corbeil RR, Corbeil LB, 1993. Immunization of virgin cows with surface antigen TF1.17 of Tritrichomonas foetus. Infect Immun 61: 13851394.

    • Search Google Scholar
    • Export Citation
  • 5.

    McGrory T, Garber GE, 1992. Mouse intravaginal infection with Trichomonas vaginalis and role of Lactobacillus acidophilus in sustaining infection. Infect Immun 60: 23752379.

    • Search Google Scholar
    • Export Citation
  • 6.

    Yadav M, Gupta I, Malla N, 2005. Kinetics of immunoglobulin G, M, A and IgG subclass responses in experimental intravaginal trichomoniasis: prominence of IgG1 response. Parasite Immunol 27: 461467.

    • Search Google Scholar
    • Export Citation
  • 7.

    Lushbaugh WB, Blossom AC, Shah PH, Banga AK, Jaynes JM, Cleary JD, Finley RW, 2000. Use of intravaginal microbicides to prevent acquisition of Trichomonas vaginalis infection in Lactobacillus-pretreated, estrogenized young mice. Am J Trop Med Hyg 63: 284289.

    • Search Google Scholar
    • Export Citation
  • 8.

    Mutwiri GK, Corbeil LB, 1998. Genital and systemic immune responses in a murine model of Tritrichomonas foetus infection. J Parasitol 84: 321327.

    • Search Google Scholar
    • Export Citation
  • 9.

    Agnew DW, Corbeil LB, Munson L, Byrne BA, BonDurant RH, 2008. A pregnant mouse model for bovine Tritrichomonas foetus infection. Vet Pathol 45: 849864.

    • Search Google Scholar
    • Export Citation
  • 10.

    Skirrow SZ, BonDurant RH, 1990. Induced Tritrichomonas foetus infection in beef heifers. J Am Vet Med Assoc 196: 885889.

  • 11.

    Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ, 2007. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315: 207212.

    • Search Google Scholar
    • Export Citation
  • 12.

    Upcroft JA, Upcroft P, 2001. Drug susceptibility testing of anaerobic protozoa. Antimicrob Agents Chemother 45: 18101814.

  • 13.

    Dunn LA, Andrews KT, McCarthy JS, Wright JM, Skinner-Adams TS, Upcroft P, Upcroft JA, 2007. The activity of protease inhibitors against Giardia duodenalis and metronidazole-resistant Trichomonas vaginalis. Int J Antimicrob Agents 29: 98102.

    • Search Google Scholar
    • Export Citation
  • 14.

    Diamond LS, Clark CG, Cunnick CC, 1995. YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. J Eukaryot Microbiol 42: 277278.

    • Search Google Scholar
    • Export Citation
  • 15.

    Jerse AE, 1999. Experimental gonococcal genital tract infection and opacity protein expression in estradiol-treated mice. Infect Immun 67: 56995708.

    • Search Google Scholar
    • Export Citation
  • 16.

    Valdez CA, Tripp JC, Miyamoto Y, Kalisiak J, Hruz P, Andersen YS, Brown SE, Kangas K, Arzu LV, Davids BJ, Gillin FD, Upcroft JA, Upcroft P, Fokin VV, Smith DK, Sharpless KB, Eckmann L, 2009. Synthesis and electrochemistry of 2-ethenyl and 2-ethanyl derivatives of 5-nitroimidazole and antimicrobial activity against Giardia lamblia. J Med Chem 52: 40384053.

    • Search Google Scholar
    • Export Citation
  • 17.

    Rein MF, Sullivan JA, Mandell GL, 1980. Trichomonacidal activity of human polymorphonuclear neutrophils: killing by disruption and fragmentation. J Infect Dis 142: 575585.

    • Search Google Scholar
    • Export Citation
  • 18.

    Aydintug MK, Widders PR, Leid RW, 1993. Bovine polymorphonuclear leukocyte killing of Tritrichomonas foetus. Infect Immun 61: 29953002.

  • 19.

    Rutkowski MR, McNamee LA, Harmsen AG, 2007. Neutrophils and inducible nitric-oxide synthase are critical for early resistance to the establishment of Tritrichomonas foetus infection. J Parasitol 93: 562574.

    • Search Google Scholar
    • Export Citation
  • 20.

    Braude AI, Corbeil LB, Levine S, Ito J, McCutchan J, 1978. Possible influence of cyclic menstrual changes on resistance to the gonococcus. Gotschlich ED, Holmes KK, Sawyer WD, Young FE, eds. Immunobiology of Neisseria gonorrhoeae. Washington, DC: American Society for Microbiology. 328337.

    • Search Google Scholar
    • Export Citation
  • 21.

    Dunne RL, Dunn LA, Upcroft P, O'Donoghue PJ, Upcroft JA, 2003. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis. Cell Res 13: 239249.

    • Search Google Scholar
    • Export Citation
  • 22.

    Corbeil LB, Hodgson JL, Jones DW, Corbeil RR, Widders PR, Stephens LR, 1989. Adherence of Tritrichomonas foetus to bovine vaginal epithelial cells. Infect Immun 57: 21582165.

    • Search Google Scholar
    • Export Citation
  • 23.

    Smith P, 1993. Estrogens and the urogenital tract. Studies on steroid hormone receptors and a clinical study on a new estradiol-releasing vaginal ring. Acta Obstet Gynecol Scand Suppl 157: 126.

    • Search Google Scholar
    • Export Citation
  • 24.

    Hodgson JL, Jones DW, Widders PR, Corbeil LB, 1990. Characterization of Tritrichomonas foetus antigens by use of monoclonal antibodies. Infect Immun 58: 30783083.

    • Search Google Scholar
    • Export Citation
  • 25.

    Singh BN, BonDurant RH, Campero CM, Corbeil LB, 2001. Immunological and biochemical analysis of glycosylated surface antigens and lipophosphoglycan of Tritrichomonas foetus. J Parasitol 87: 770777.

    • Search Google Scholar
    • Export Citation
  • 26.

    Singh BN, Lucas JJ, Beach DH, Shin ST, Gilbert RO, 1999. Adhesion of Tritrichomonas foetus to bovine vaginal epithelial cells. Infect Immun 67: 38473854.

    • Search Google Scholar
    • Export Citation
  • 27.

    Singh BN, Beach DH, Lindmark DG, Costello CE, 1994. Identification of the lipid moiety and further characterization of the novel lipophosphoglycan-like glycoconjugates of Trichomonas vaginalis and Trichomonas foetus. Arch Biochem Biophys 309: 273280.

    • Search Google Scholar
    • Export Citation
  • 28.

    Corbeil LB, Campero CM, Rhyan JC, Anderson ML, Gershwin LJ, Agnew DW, Munson L, Bondurant RH, 2005. Uterine mast cells and immunoglobulin-E antibody responses during clearance of Tritrichomonas foetus. Vet Pathol 42: 282290.

    • Search Google Scholar
    • Export Citation
  • 29.

    Furr PM, Taylor-Robinson D, 1989. Oestradiol-induced infection of the genital tract of female mice by Mycoplasma hominis. J Gen Microbiol 135: 27432749.

    • Search Google Scholar
    • Export Citation
  • 30.

    Furr PM, Taylor-Robinson D, 1989. The establishment and persistence of Ureaplasma urealyticum in oestradiol-treated female mice. J Med Microbiol 29: 111114.

    • Search Google Scholar
    • Export Citation
  • 31.

    Taylor-Robinson D, Furr PM, Hetherington CM, 1990. Neisseria gonorrhoeae colonises the genital tract of oestradiol-treated germ-free female mice. Microb Pathog 9: 369373.

    • Search Google Scholar
    • Export Citation
  • 32.

    Schwebke JR, Barrientes FJ, 2006. Prevalence of Trichomonas vaginalis isolates with resistance to metronidazole and tinidazole. Antimicrob Agents Chemother 50: 42094210.

    • Search Google Scholar
    • Export Citation
 
 
 

 

 

 

 

 

 

Murine Models of Vaginal Trichomonad Infections

View More View Less
  • Departments of Pathology and Medicine, School of Medicine, University of California San Diego, San Diego, California; Department of Population and Health Reproduction, School of Veterinary Medicine, University of California Davis, Davis, California

Trichomonas vaginalis and Tritrichomonas foetus cause common sexually transmitted infections in humans and cattle, respectively. Mouse models of trichomoniasis are important for pathogenic and therapeutic studies. Here, we compared murine genital infections with T. vaginalis and T. foetus. Persistent vaginal infection with T. foetus was established with 100 parasites but T. vaginalis infection required doses of 106, perhaps because of greater susceptibility to killing by mouse vaginal polymorphonuclear leukocytes. Infection with T. vaginalis persisted longest after combined treatment of mice with estrogen and dexamethasone, whereas infection was only short-lived when mice were given estrogen or dexamethasone alone, co-infected with Lactobacillus acidophilus, and/or pretreated with antibiotics. Infection rates were similar with metronidazole-resistant (MR) and metronidazole-sensitive (MS) T. vaginalis. High dose but not low dose metronidazole treatment controlled infection with MS better than MR T. vaginalis. These murine models will be valuable for investigating the pathogenesis and treatment of trichomoniasis.

Author Notes

*Address correspondence to Lynette B. Corbeil, Division of Infectious Diseases, UCSD Medical Center, 200 W. Arbor Dr., San Diego, CA 92103-8416. E-mail: lcorbeil@ucsd.edu

Financial support: This work was supported in part by National Institutes of Health grant DK80506 (LE).

Authors' addresses: Eduardo R. Cobo and Lynette B. Corbeil, Division of Infectious Diseases, UCSD Medical Center, San Diego, CA, E-mails: edu.r.cobo@gmail.com and lcorbeil@ucsd.edu. Lars Eckmann, Department of Medicine, La Jolla, CA, E-mail: leckmann@ucsd.edu.

Reprint requests: Lynette B. Corbeil, Division of Infectious Diseases, UCSD Medical Center, 200 W. Arbor Dr. San Diego, CA 92103-8416, E-mail: lcorbeil@ucsd.edu.

Save