Reexamination of Culex pipiens Hybridization Zone in the Eastern United States by Ribosomal DNA-Based Single Nucleotide Polymorphism Markers

Shaoming Huang Center for Vector Biology & Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut

Search for other papers by Shaoming Huang in
Current site
Google Scholar
PubMed
Close
,
Goudarz Molaei Center for Vector Biology & Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut

Search for other papers by Goudarz Molaei in
Current site
Google Scholar
PubMed
Close
, and
Theodore G. Andreadis Center for Vector Biology & Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut

Search for other papers by Theodore G. Andreadis in
Current site
Google Scholar
PubMed
Close
Restricted access

Mosquitoes in the Culex pipiens complex are important vectors of several disease-causing pathogens, including West Nile virus. In North America, the complex consists of Cx. pipiens pipiens form pipiens, Cx. pipiens pipiens form molestus, Cx. pipiens quinquefasciatus, and their hybrids that exhibit substantial diversity in physiology, behavior, and geographic range. Hybridization among these mosquitoes is of concern because of potential implications for disease transmission. Currently, several morphological and molecular markers exist for differentiating members of the Cx. pipiens complex; however, these markers have specific limitations. We report here two highly reliable ribosomal DNA-based single nucleotide polymorphism (SNP) markers, CxpG2T and CxpA2d, for detecting Cx. pipiens complex mosquitoes containing Cx. p. quinquefasciatus alleles. Both CxpG2T and CxpA2d contain one allele that is present in all members of the Cx. pipiens complex, and the other allele is specific to Cx. p. quinquefasciatus. Testing of field populations from the eastern United States showed that these two SNP markers are capable of identifying a south to north gradient of Cx. p. quinquefasciatus and hybrids. The northern limit of detection of Cx. p. quinquefasciatus alleles in this study was in Fort Totten, NY (40.79°N), whereas the southern boundary was determined between Atlanta, GA (33.81°N) and Gainesville, FL (29.64°N). CxpG2T and CxpA2d were more accurate than the ACE-2 marker, and they may conceivably provide comparable resolution with microsatellite markers for detecting Cx. p. quinquefasciatus alleles.

Author Notes

*Address correspondence to Shaoming Huang, San Joaquin County Mosquito and Vector Control District, 7759 South Airport Way, Stockton, CA 95206-3918. E-mail: Shuang@sjmosquito.org

Financial support: Funding for this research was provided in part by Laboratory Capacity for Infectious Diseases Cooperative Agreement number U50/CCU6806-01-1 from the Centers for Disease Control and Prevention, US Department of Agriculture Specific Cooperative Agreement number 58-6615-1-218, and US Department of Agriculture-administered Hatch funds CONH00768 (to T.G.A.).

Authors' addresses: Shaoming Huang, Goudarz Molaei, and Theodore G. Andreadis, Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, E-mails: Shuang@sjmosquito.org, Goudarz.Molaei@ct.gov, and Theodore.Andreadis@ct.gov.

  • 1.

    Barr AR, 1957. The distribution of Culex p. pipiens and Cx. p. quinquefasciatus in North America. Am J Trop Med Hyg 6: 153165.

  • 2.

    Vinogradova EB, 2000. Culex Pipiens Pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. Sofia, Bulgaria: Pensoft Publishers.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Hayes EB, Komar N, Nasci RS, Montgomery SP, O'Leary DR, Campbell GL, 2005. Epidemiology and transmission dynamics of West Nile virus disease. Emerg Infect Dis 11: 11671173.

  • 4.

    Huang S, Hamer GL, Molaei G, Walker ED, Andreadis TG, 2009. Genetic variation associated with mammalian feeding in Culex pipiens from a West Nile virus epidemic region in Chicago, Illinois. Vector Borne Zoonotic Dis 9: 637642.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Gomes B, Sousa C, Novo M, Freitas F, Alves R, Corte-Real A, Salgueiro P, Donnelly M, Almeida A, Pinto J, 2009. Asymmetric introgression between sympatric molestus and pipiens forms of Culex pipiens (Diptera: Culicidae) in the Comporta region, Portugal. BMC Evol Biol 9: 262.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Huang S, Molaei G, Andreadis TG, 2008. Genetic insights into the population structure of Culex pipiens (Diptera: Culicidae) in the northeastern United States by using microsatellite analysis. Am J Trop Med Hyg 79: 518527.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Kothera L, Godsey M, Mutebi J-P, Savage HM, 2010. A comparison of aboveground and belowground populations of Culex pipiens (Diptera: Culicidae) mosquitoes in Chicago, Illinois, and New York City, New York, using microsatellites. J Med Entomol 47: 805813.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Sanogo YO, Kim CH, Lampman R, Halvorsen JG, Gad AM, Novak RJ, 2008. Identification of male specimens of the Culex pipiens complex (Diptera: Culicidae) in the hybrid zone using morphology and molecular techniques. J Med Entomol 45: 203209.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Kothera L, Zimmerman EM, Richards CM, Savage HM, 2009. Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a north-south transect in the central united states. J Med Entomol 46: 236248.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Smith JL, Fonseca DM, 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am J Trop Med Hyg 70: 339345.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Aspen S, Savage HM, 2003. Polymerase chain reaction assay identifies North American members of the Culex pipiens complex based on nucleotide sequence differences in the acetylcholinesterase gene Ace.2. J Am Mosq Control Assoc 19: 323328.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Savage HM, Aggarwal D, Apperson CS, Katholi CR, Gordon E, Hassan HK, Anderson M, Charnetzky D, McMillen L, Unnasch EA, Unnasch TR, 2007. Host choice and West Nile virus infection rates in blood-fed mosquitoes, including members of the Culex pipiens complex, from Memphis and Shelby County, Tennessee, 2002–2003. Vector Borne Zoonotic Dis 7: 365386.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Bahnck CM, Fonseca DM, 2006. Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. Am J Trop Med Hyg 75: 251255.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Keyghobadi N, Matrone MA, Ebel GD, Kramer LD, Fonseca DM, 2004. Microsatellite loci from the northern house mosquito (Culex pipiens), a principal vector of West Nile virus in North America. Mol Ecol Notes 4: 2022.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Smith JL, Keyghobadi N, Matrone MA, Escher RL, Fonseca DM, 2005. Cross-species comparison of microsatellite loci in the Culex pipiens complex and beyond. Mol Ecol Notes 5: 697700.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hillis DM, Dixon MT, 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol 66: 411453.

  • 17.

    Collins FH, Paskewitz SM, 1996. A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 5: 19.

  • 18.

    Baldwin BG, Sanderson MJ, Porter JM, Wojciechowski MF, Campbell CS, Donoghue MJ, 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard 82: 247277.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Crabtree MB, Savage HM, Miller BR, 1995. Development of a species-diagnostic polymerase chain reaction assay for the identification of Culex vectors of St. Louis encephalitis virus based on interspecies sequence variation in ribosomal DNA spacers. Am J Trop Med Hyg 53: 105109.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Moss T, Stefanovsky VY, 1995. Promotion and regulation of ribosomal transcription in eukaryotes by RNA polymerase I. Prog Nucleic Acid Res Mol Biol 50: 2566.

  • 21.

    Mateos M, Markow TA, 2005. Ribosomal intergenic spacer (IGS) length variation across the Drosophilinae (Diptera: Drosophilidae). BMC Evol Biol 5: 46.

  • 22.

    Gorokhova E, Dowling TE, Weider LJ, Crease TJ, Elser JJ, 2002. Functional and ecological significance of rDNA intergenic spacer variation in a clonal organism under divergent selection for production rate. Proc Biol Sci 269: 23732379.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Favia G, della Torre A, Bagayoko M, Lanfrancotti A, Sagnon N, Toure YT, Coluzzi M, 1997. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol Biol 6: 377383.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Wilkins EE, Howell PI, Benedict MQ, 2006. IMP PCR primers detect single nucleotide polymorphisms for Anopheles gambiae species identification, Mopti and Savanna rDNA types, and resistance to dieldrin in Anopheles arabiensis. Malar J 5: 125.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Darsie RFJ, Ward RA, 2005. Identification and geographical distribution of the mosquitoes of North America, north of Mexico. Gainesville, FL: University Press of Florida.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Paule MR, 1998. Class I genes. Paule MR, ed. Transcription of Ribosomal RNA Genes by Eukaryotic RNA Polymerase I. Berlin, Germany: Springer-Verlag, 18.

  • 27.

    Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81: 80148018.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Black WC, McLain DK, Rai KS, 1989. Patterns of variation in the rDNA cistron within and among world populations of a mosquito, Aedes albopictus (Skuse). Genetics 121: 539550.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    De Merida AM, De Mata MP, Molina E, Porter CH, Black WC IV, 1995. Variation in ribosomal DNA intergenic spacers among populations of Anopheles albimanus in South and Central America. Am J Trop Med Hyg 53: 469477.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Scott JA, Brogdon WG, Collins FH, 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49: 520529.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Whang IJ, Jung J, Park JK, Min GS, Kim W, 2002. Intragenomic length variation of the ribosomal DNA intergenic spacer in a malaria vector, Anopheles sinensis. Mol Cells 14: 158162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Wu CC, Fallon AM, 1998. Analysis of a ribosomal DNA intergenic spacer region from the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 7: 1929.

  • 33.

    Burton RS, Metz EC, Flowers JM, Willett CS, 2005. Unusual structure of ribosomal DNA in the copepod Tigriopus californicus: intergenic spacer sequences lack internal subrepeats. Gene 344: 105113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Byrne K, Nichols RA, 1999. Culex pipiens in London underground tunnels: differentiation between surface and subterranean populations. Heredity 82: 715.

  • 35.

    Kent RJ, Harrington LC, Norris DE, 2007. Genetic differences between Culex pipiens f. molestus and Culex pipiens pipiens (Diptera: Culicidae) in New York. J Med Entomol 44: 5059.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Barr AR, 1967. Occurrence and distribution of the Culex pipiens complex. Bull World Health Organ 37: 293296.

  • 37.

    Fonseca DM, Keyghobadi N, Malcolm CA, Mehmet C, Schaffner F, Mogi M, Fleischer RC, Wilkerson RC, 2004. Emerging vectors in the Culex pipiens complex. Science 303: 15351538.

  • 38.

    Ross HH, 1964. The colonization of temperate North America by mosquitoes and man. Mosq News 24: 103118.

  • 39.

    Fonseca DM, Smith JL, Wilkerson RC, Fleischer RC, 2006. Pathways of expansion and multiple introductions illustrated by large genetic differentiation among worldwide populations of the southern house mosquito. Am J Trop Med Hyg 74: 284289.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Fonseca DM, LaPointe DA, Fleischer RC, 2000. Bottlenecks and multiple introductions: population genetics of the vector of avian malaria in Hawaii. Mol Ecol 9: 18031814.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Bartholomay LC, Waterhouse RM, Mayhew GF, Campbell CL, Michel K, Zou Z, Ramirez JL, Das S, Alvarez K, Arensburger P, Bryant B, Chapman SB, Dong Y, Erickson SM, Karunaratne SHPP, Kokoza V, Kodira CD, Pignatelli P, Shin SW, Vanlandingham DL, Atkinson PW, Birren B, Christophides GK, Clem RJ, Hemingway J, Higgs S, Megy K, Ranson H, Zdobnov EM, Raikhel AS, Christensen BM, Dimopoulos G, Muskavitch MAT, 2010. Pathogenomics of Culex quinquefasciatus and meta-analysis of infection responses to diverse pathogens. Science 330: 8890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, Bartholomay L, Bidwell S, Caler E, Camara F, Campbell CL, Campbell KS, Casola C, Castro MT, Chandramouliswaran I, Chapman SB, Christley S, Costas J, Eisenstadt E, Feschotte C, Fraser-Liggett C, Guigo R, Haas B, Hammond M, Hansson BS, Hemingway J, Hill SR, Howarth C, Ignell R, Kennedy RC, Kodira CD, Lobo NF, Mao C, Mayhew G, Michel K, Mori A, Liu N, Naveira H, Nene V, Nguyen N, Pearson MD, Pritham EJ, Puiu D, Qi Y, Ranson H, Ribeiro JMC, Roberston HM, Severson DW, Shumway M, Stanke M, Strausberg RL, Sun C, Sutton G, Tu Z, Tubio JMC, Unger MF, Vanlandingham DL, Vilella AJ, White O, White JR, Wondji CS, Wortman J, Zdobnov EM, Birren B, Christensen BM, Collins FH, Cornel A, Dimopoulos G, Hannick LI, Higgs S, Lanzaro GC, Lawson D, Lee NH, Muskavitch MAT, Raikhel AS, Atkinson PW, 2010. Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics. Science 330: 8688.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol (in press).

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Junier T, Pagni M, 2000. Dotlet: diagonal plots in a web browser. Bioinformatics 16: 178179.

Past two years Past Year Past 30 Days
Abstract Views 589 468 10
Full Text Views 596 20 1
PDF Downloads 116 18 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save