Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE, 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103: 4198ā4203.
Alphey L, Nimmo D, O'Connell S, Alphey N, 2008. Insect population suppression using engineered insects. Adv Exp Med Biol 627: 93ā103.
Scott TW, Takken W, Knols BG, BoĆ«te C, 2002. The ecology of genetic modified mosquitoes. Science 298: 117ā119.
Benedict M, D'Abbs P, Dobson S, Gottlieb M, Harrington LC, Higgs S, James A, James S, Knols B, Lavery J, O'Neill S, Scott TW, Takken W, Toure Y, 2008. Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a Scientific Working Group. Vector Borne Zoonotic Dis 8: 127ā166.
Ferguson HM, Ng'habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, Russell TL, Urassa H, Mshinda H, Killeen GF, Knols BG, 2008. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J 20: 158.
Helinski ME, Knols BG, 2008. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J Med Entomol 45: 698ā705.
Scott TW, Rasgon JL, Black WC, Gould F, 2006. Fitness studies: developing a consensus methodology. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Knols BG, Frontis LC, eds. Wageningen, The Netherlands, 171ā181. Available at: http://library.wur.nl/frontis/disease_vectors/16_scott.pdf. Accessed February 2011.
Scott TW, 2005. Containment of arthropod disease vectors. ILAR J 46: 53ā61.
Kessler S, Guerin PM, 2008. Responses of Anopheles gambiae, Anopheles stephensi, Aedes aegypti, and Culex pipiens mosquitoes (Diptera: Culicidae) to cool and humid refugium conditions. J Vector Ecol 33: 145ā149.
Williams CR, Long SA, Russell RC, Ritchie SA, 2006. Field efficacy of the BG-Sentinel compared with CDC Backpack Aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22: 296ā300.
Parish OO, Putnam TW, 1977. Equation for the Determination of Humidity from Dewpoint and Psychrometric Data. Washington DC: National Aeronautic and Space Administration (NASA), Technical Note TN D-8401.
Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 77ā88.
Muir LE, Kay BH, 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58: 277ā282.
Reiter P, 2007. Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7: 261ā273.
Colton YM, Chadee DD, Severson DW, 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17: 195ā204.
McDonald PT, 1977. Population characteristics of domestic Aedes aegypti (Diptera: culicidae) in villages on the Kenya Coast I. Adult survivorship and population size. J Med Entomol 14: 42ā48.
Trpis M, Hausermann W, 1986. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 55: 1263ā1279.
Styer LM, Carey JR, Wang JL, Scott TW, 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111ā117.
Reisen WK, Mahmood F, Parveen T, 1980. Anopheles culicifacies Giles: a release-recapture experiment with cohorts of known age with implications for malaria epidemiology and genetical control in Pakistan. Trans R Soc Trop Med Hyg 743: 307ā317.
Constantini C, Li S, della Torre A, Sagnon N, Coluzzi M, Taylor CE, 1996. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med Vet Entomol 10: 203ā219.
Haramis LD, Foster WA, 1983. Survival and population density of Aedes triseriatus (Diptera: Culicidae) in a wood lot in central Ohio, USA. J Med Entomol 20: 391ā398.
Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW, 2008. Age-dependent survival of the dengue vector, Ae. aegypti, demonstrated by simultaneous release and recapture of different age cohorts. J M Entomol 45: 307ā313.
Harrington LC, Edman JD, Costero AC, Clark GG, Kittayapong P, Scott TW, 2001. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. 2001. J Med Entomol 38: 537ā547.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 19 | 19 | 4 |
Full Text Views | 420 | 212 | 1 |
PDF Downloads | 63 | 28 | 0 |
Development of new genetic approaches to either interfere with the ability of mosquitoes to transmit dengue virus or to reduce vector population density requires progressive evaluation from the laboratory to contained field trials, before open field release. Trials in contained outdoor facilities are an important part of this process because they can be used to evaluate the effectiveness and reliability of modified strains in settings that include natural environmental variations without releasing mosquitoes into the open field. We describe a simple and cost-effective semi-field system designed to study Aedes aegypti carrying a dominant lethal gene (fsRIDL) in semi-field conditions. We provide a protocol for establishing, maintaining, and monitoring stable Ae. aegypti population densities inside field cages.
Financial support: This research was supported by funds from the Regents of the University of California from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative (GC7 #316) and by a Pasteur Institute-Cenci Bolognetti Foundation grant to Laura Valerio.
Disclosure: This research benefited from discussions with working groups in the Research and Policy for Infectious Disease Dynamics (RAPIDD) program of the Science and Technology Directorate, Department of Homeland Security, and the Fogarty International Center, National Institutes of Health.
Authors' addresses: Luca Facchinelli and Laura Valerio, Department of Entomology, University of California, Davis, CA, E-mails: lfacchinelli@ucdavis.edu and lvalerio@ucdavis.edu. J. Guillermo Bond, Janine M. Ramsey, and M. Casas-Martinez, Centro Regional de Investigación en Salud Pública (CRISP), Instituto Nacional de Salud Pública (INSP), Chiapas, Mexico, E-mails: gbond@insp.mx, jramsey@insp.mx, and mcasas@insp.mx. Megan R. Wise de Valdez, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, E-mail: megwise@lamar.colostate.edu. Laura C. Harrington, Department of Entomology, Cornell University, Ithaca, New York, E-mail: lch27@cornell.edu. Thomas W. Scott, Department of Entomology, University of California, Davis CA, and Fogarty International Center, National Institutes of Health, Bethesda, MD, E-mail: twscott@ucdavis.edu.
Franz AW, Sanchez-Vargas I, Adelman ZN, Blair CD, Beaty BJ, James AA, Olson KE, 2006. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc Natl Acad Sci USA 103: 4198ā4203.
Alphey L, Nimmo D, O'Connell S, Alphey N, 2008. Insect population suppression using engineered insects. Adv Exp Med Biol 627: 93ā103.
Scott TW, Takken W, Knols BG, BoĆ«te C, 2002. The ecology of genetic modified mosquitoes. Science 298: 117ā119.
Benedict M, D'Abbs P, Dobson S, Gottlieb M, Harrington LC, Higgs S, James A, James S, Knols B, Lavery J, O'Neill S, Scott TW, Takken W, Toure Y, 2008. Guidance for contained field trials of vector mosquitoes engineered to contain a gene drive system: recommendations of a Scientific Working Group. Vector Borne Zoonotic Dis 8: 127ā166.
Ferguson HM, Ng'habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, Russell TL, Urassa H, Mshinda H, Killeen GF, Knols BG, 2008. Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J 20: 158.
Helinski ME, Knols BG, 2008. Mating competitiveness of male Anopheles arabiensis mosquitoes irradiated with a partially or fully sterilizing dose in small and large laboratory cages. J Med Entomol 45: 698ā705.
Scott TW, Rasgon JL, Black WC, Gould F, 2006. Fitness studies: developing a consensus methodology. Bridging Laboratory and Field Research for Genetic Control of Disease Vectors. Knols BG, Frontis LC, eds. Wageningen, The Netherlands, 171ā181. Available at: http://library.wur.nl/frontis/disease_vectors/16_scott.pdf. Accessed February 2011.
Scott TW, 2005. Containment of arthropod disease vectors. ILAR J 46: 53ā61.
Kessler S, Guerin PM, 2008. Responses of Anopheles gambiae, Anopheles stephensi, Aedes aegypti, and Culex pipiens mosquitoes (Diptera: Culicidae) to cool and humid refugium conditions. J Vector Ecol 33: 145ā149.
Williams CR, Long SA, Russell RC, Ritchie SA, 2006. Field efficacy of the BG-Sentinel compared with CDC Backpack Aspirators and CO2-baited EVS traps for collection of adult Aedes aegypti in Cairns, Queensland, Australia. J Am Mosq Control Assoc 22: 296ā300.
Parish OO, Putnam TW, 1977. Equation for the Determination of Humidity from Dewpoint and Psychrometric Data. Washington DC: National Aeronautic and Space Administration (NASA), Technical Note TN D-8401.
Scott TW, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Zhou H, Edman JD, 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: population dynamics. J Med Entomol 37: 77ā88.
Muir LE, Kay BH, 1998. Aedes aegypti survival and dispersal estimated by mark-release-recapture in northern Australia. Am J Trop Med Hyg 58: 277ā282.
Reiter P, 2007. Oviposition, dispersal, and survival in Aedes aegypti: implications for the efficacy of control strategies. Vector Borne Zoonotic Dis 7: 261ā273.
Colton YM, Chadee DD, Severson DW, 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17: 195ā204.
McDonald PT, 1977. Population characteristics of domestic Aedes aegypti (Diptera: culicidae) in villages on the Kenya Coast I. Adult survivorship and population size. J Med Entomol 14: 42ā48.
Trpis M, Hausermann W, 1986. Dispersal and other population parameters of Aedes aegypti in an African village and their possible significance in epidemiology of vector-borne diseases. Am J Trop Med Hyg 55: 1263ā1279.
Styer LM, Carey JR, Wang JL, Scott TW, 2007. Mosquitoes do senesce: departure from the paradigm of constant mortality. Am J Trop Med Hyg 76: 111ā117.
Reisen WK, Mahmood F, Parveen T, 1980. Anopheles culicifacies Giles: a release-recapture experiment with cohorts of known age with implications for malaria epidemiology and genetical control in Pakistan. Trans R Soc Trop Med Hyg 743: 307ā317.
Constantini C, Li S, della Torre A, Sagnon N, Coluzzi M, Taylor CE, 1996. Density, survival and dispersal of Anopheles gambiae complex mosquitoes in a West African Sudan savanna village. Med Vet Entomol 10: 203ā219.
Haramis LD, Foster WA, 1983. Survival and population density of Aedes triseriatus (Diptera: Culicidae) in a wood lot in central Ohio, USA. J Med Entomol 20: 391ā398.
Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW, 2008. Age-dependent survival of the dengue vector, Ae. aegypti, demonstrated by simultaneous release and recapture of different age cohorts. J M Entomol 45: 307ā313.
Harrington LC, Edman JD, Costero AC, Clark GG, Kittayapong P, Scott TW, 2001. Analysis of survival of young and old Aedes aegypti (Diptera: Culicidae) from Puerto Rico and Thailand. 2001. J Med Entomol 38: 537ā547.
Past two years | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 19 | 19 | 4 |
Full Text Views | 420 | 212 | 1 |
PDF Downloads | 63 | 28 | 0 |