• 1.

    Smith RD, Coast J, 2002. Antimicrobial resistance: a global response. Bull World Health Organ 80: 126133.

  • 2.

    Warren JW, Abrutyn E, Hebel JR, Johnson JR, Schaeffer AJ, Stamm WE, 1999. Guidelines for antimicrobial treatment of uncomplicated acute bacterial cystitis and acute pyelonephritis in women. Infectious Diseases Society of America (IDSA). Clin Infect Dis 29: 745758.

    • Search Google Scholar
    • Export Citation
  • 3.

    Echols RM, Tosiello RL, Haverstock DC, Tice AD, 1999. Demographic, clinical, and treatment parameters influencing the outcome of acute cystitis. Clin Infect Dis 29: 113119.

    • Search Google Scholar
    • Export Citation
  • 4.

    Kahlmeter G, Menday P, 2003. Cross-resistance and associated resistance in 2478 Escherichia coli isolates from the Pan-European ECO.SENS Project surveying the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections. J Antimicrob Chemother 52: 128131.

    • Search Google Scholar
    • Export Citation
  • 5.

    Zhanel GG, Hisanaga TL, Laing NM, DeCorby MR, Nichol KA, Weshnoweski B, Johnson J, Noreddin A, Low DE, Karlowsky JA, Hoban DJ, 2006. Antibiotic resistance in Escherichia coli outpatient urinary isolates: final results from the North American Urinary Tract Infection Collaborative Alliance (NAUTICA). Int J Antimicrob Agents 27: 468475.

    • Search Google Scholar
    • Export Citation
  • 6.

    Gupta K, Scholes D, Stamm WE, 1999. Increasing prevalence of antimicrobial resistance among uropathogens causing acute uncomplicated cystitis in women. JAMA 281: 736738.

    • Search Google Scholar
    • Export Citation
  • 7.

    Alos JI, Serrano MG, Gomez-Garces JL, Perianes J, 2005. Antibiotic resistance of Escherichia coli from community-acquired urinary tract infections in relation to demographic and clinical data. Clin Microbiol Infect 11: 199203.

    • Search Google Scholar
    • Export Citation
  • 8.

    Kahlmeter G, 2003. An international survey of the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections: the ECO.SENS Project. J Antimicrob Chemother 51: 6976.

    • Search Google Scholar
    • Export Citation
  • 9.

    Nicoletti J, Kuster SP, Sulser T, Zbinden R, Ruef C, Ledergerber B, Weber R, 2010. Risk factors for urinary tract infections due to ciprofloxacin-resistant Escherichia coli in a tertiary care urology department in Switzerland. Swiss Med Wkly 140: w13059.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bush K, Jacoby GA, Medeiros AA, 1995. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39: 12111233.

    • Search Google Scholar
    • Export Citation
  • 11.

    Jacoby GA, Munoz-Price LS, 2005. The new beta-lactamases. N Engl J Med 352: 380391.

  • 12.

    Goossens H, Ferech M, Vander Stichele R, Elseviers M, 2005. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 365: 579587.

    • Search Google Scholar
    • Export Citation
  • 13.

    Dromigny JA, Nabeth P, Juergens-Behr A, Perrier-Gros-Claude JD, 2005. Risk factors for antibiotic-resistant Escherichia coli isolated from community-acquired urinary tract infections in Dakar, Senegal. J Antimicrob Chemother 56: 236239.

    • Search Google Scholar
    • Export Citation
  • 14.

    Clinical and Laboratory Standards Institute, 2008. Performance Standards for Antimicrobial Susceptibility Testing: Eighteenth Informational Supplement 100-S18. Wayne, PA: Clinical and Laboratory Standards Institute.

    • Search Google Scholar
    • Export Citation
  • 15.

    Raka L, Mulliqi-Osmani G, Berisha L, Begolli L, Omeragiq S, Parsons L, Salfinger M, Jaka A, Kurti A, Jakupi X, 2004. Etiology and susceptibility of urinary tract isolates in Kosova. Int J Antimicrob Agents 23 (Suppl 1): S2S5.

    • Search Google Scholar
    • Export Citation
  • 16.

    Randrianirina F, Soares JL, Carod JF, Ratsima E, Thonnier V, Combe P, Grosjean P, Talarmin A, 2007. Antimicrobial resistance among uropathogens that cause community-acquired urinary tract infections in Antananarivo, Madagascar. J Antimicrob Chemother 59: 309312.

    • Search Google Scholar
    • Export Citation
  • 17.

    Akram M, Shahid M, Khan AU, 2007. Etiology and antibiotic resistance patterns of community-acquired urinary tract infections in J N M C Hospital Aligarh, India. Ann Clin Microbiol Antimicrob 6: 4.

    • Search Google Scholar
    • Export Citation
  • 18.

    Andrade SS, Sader HS, Jones RN, Pereira AS, Pignatari AC, Gales AC, 2006. Increased resistance to first-line agents among bacterial pathogens isolated from urinary tract infections in Latin America: time for local guidelines? Mem Inst Oswaldo Cruz 101: 741748.

    • Search Google Scholar
    • Export Citation
  • 19.

    Schaeffer AJ, Rajan N, Cao Q, Anderson BE, Pruden DL, Sensibar J, Duncan JL, 2001. Host pathogenesis in urinary tract infections. Int J Antimicrob Agents 17: 245251.

    • Search Google Scholar
    • Export Citation
  • 20.

    Hryniewicz K, Szczypa K, Sulikowska A, Jankowski K, Betlejewska K, Hryniewicz W, 2001. Antibiotic susceptibility of bacterial strains isolated from urinary tract infections in Poland. J Antimicrob Chemother 47: 773780.

    • Search Google Scholar
    • Export Citation
  • 21.

    Arslan H, Azap OK, Ergonul O, Timurkaynak F, 2005. Risk factors for ciprofloxacin resistance among Escherichia coli strains isolated from community-acquired urinary tract infections in Turkey. J Antimicrob Chemother 56: 914918.

    • Search Google Scholar
    • Export Citation
  • 22.

    Karlowsky JA, Kelly LJ, Thornsberry C, Jones ME, Sahm DF, 2002. Trends in antimicrobial resistance among urinary tract infection isolates of Escherichia coli from female outpatients in the United States. Antimicrob Agents Chemother 46: 25402545.

    • Search Google Scholar
    • Export Citation
  • 23.

    Aboderin OA, Abdu AR, Odetoyin BW, Lamikanra A, 2009. Antimicrobial resistance in Escherichia coli strains from urinary tract infections. J Natl Med Assoc 101: 12681273.

    • Search Google Scholar
    • Export Citation
  • 24.

    Goettsch W, van Pelt W, Nagelkerke N, Hendrix MG, Buiting AG, Petit PL, Sabbe LJ, van Griethuysen AJ, de Neeling AJ, 2000. Increasing resistance to fluoroquinolones in Escherichia coli from urinary tract infections in The Netherlands. J Antimicrob Chemother 46: 223228.

    • Search Google Scholar
    • Export Citation
  • 25.

    Hooton TM, 2003. Fluoroquinolones and resistance in the treatment of uncomplicated urinary tract infection. Int J Antimicrob Agents 22 (Suppl 2): 6572.

    • Search Google Scholar
    • Export Citation
  • 26.

    Schito GC, 2003. Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents 22 (Suppl 2): 7983.

  • 27.

    Ullah F, Malik SA, Ahmed J, 2009. Antimicrobial susceptibility and ESBL prevalence in Pseudomonas aeruginosa isolated from burn patients in the north west of Pakistan. Burns 35: 10201025.

    • Search Google Scholar
    • Export Citation
  • 28.

    Lobel B, 2003. Short term therapy for uncomplicated urinary tract infection today. Clinical outcome upholds the theories. Int J Antimicrob Agents 22 (Suppl 2): 8587.

    • Search Google Scholar
    • Export Citation
  • 29.

    Sire JM, Nabeth P, Perrier-Gros-Claude JD, Bahsoun I, Siby T, Macondo EA, Gaye-Diallo A, Guyomard S, Seck A, Breurec S, Garin B, 2007. Antimicrobial resistance in outpatient Escherichia coli urinary isolates in Dakar, Senegal. J Infect Dev Ctries 1: 263268.

    • Search Google Scholar
    • Export Citation
  • 30.

    Howard AJ, Magee JT, Fitzgerald KA, Dunstan FD, 2001. Factors associated with antibiotic resistance in coliform organisms from community urinary tract infection in Wales. J Antimicrob Chemother 47: 305313.

    • Search Google Scholar
    • Export Citation
  • 31.

    Paterson DL, Bonomo RA, 2005. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657686.

  • 32.

    Reinert RR, Low DE, Rossi F, Zhang X, Wattal C, Dowzicky MJ, 2007. Antimicrobial susceptibility among organisms from the Asia/Pacific Rim, Europe and Latin and North America collected as part of TEST and the in vitro activity of tigecycline. J Antimicrob Chemother 60: 10181029.

    • Search Google Scholar
    • Export Citation
  • 33.

    Mulvey MR, Bryce E, Boyd D, Ofner-Agostini M, Christianson S, Simor AE, Paton S, 2004. Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob Agents Chemother 48: 12041214.

    • Search Google Scholar
    • Export Citation
  • 34.

    Nijssen S, Florijn A, Bonten MJ, Schmitz FJ, Verhoef J, Fluit AC, 2004. Beta-lactam susceptibilities and prevalence of ESBL-producing isolates among more than 5000 European Enterobacteriaceae isolates. Int J Antimicrob Agents 24: 585591.

    • Search Google Scholar
    • Export Citation
  • 35.

    Smaoui H, Mahjoubi F, Boutiba I, Jouaihia W, Thabet L, Znazen A, Kammoun A, Mezghanni S, Triki O, Hammami A, Ben Hassen A, Kechrid A, Ben Redjeb S, 2003. Antibiotic resistance among E. coli isolates from urinary tract infections (1999–2000): a multicenter study. Tunis Med 81: 390394.

    • Search Google Scholar
    • Export Citation
  • 36.

    Edelstein M, Pimkin M, Palagin I, Edelstein I, Stratchounski L, 2003. Prevalence and molecular epidemiology of CTX-M extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob Agents Chemother 47: 37243732.

    • Search Google Scholar
    • Export Citation
  • 37.

    Gangoue-Pieboji J, Bedenic B, Koulla-Shiro S, Randegger C, Adiogo D, Ngassam P, Ndumbe P, Hachler H, 2005. Extended-spectrum-beta-lactamase-producing Enterobacteriaceae in Yaounde, Cameroon. J Clin Microbiol 43: 32733277.

    • Search Google Scholar
    • Export Citation
  • 38.

    Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, Song EH, Jeong SH, 2005. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 56: 698702.

    • Search Google Scholar
    • Export Citation
  • 39.

    Skippen I, Shemko M, Turton J, Kaufmann ME, Palmer C, Shetty N, 2006. Epidemiology of infections caused by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp.: a nested case-control study from a tertiary hospital in London. J Hosp Infect 64: 115123.

    • Search Google Scholar
    • Export Citation
  • 40.

    Yilmaz E, Akalin H, Ozbey S, Kordan Y, Sinirtas M, Gurcuoglu E, Ozakin C, Heper Y, Mistik R, Helvaci S, 2008. Risk factors in community-acquired/onset urinary tract infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae. J Chemother 20: 581585.

    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 307 195 6
PDF Downloads 113 79 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Decreased Susceptibility to Commonly Used Antimicrobial Agents in Bacterial Pathogens Isolated from Urinary Tract Infections in Rwanda: Need for New Antimicrobial Guidelines

View More View Less
  • Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium; Department of Clinical Biology, Centre Hospitalier Universitaire-Butare, National University of Rwanda, Butare, Rwanda; Department of Internal Medicine, Centre Hospitalier Universitaire-Butare, National University of Rwanda, Butare, Rwanda
Restricted access

The aim of this study was to obtain data on susceptibility patterns of pathogens responsible for both community and hospital urinary tract infections (UTIs); and analyzed risk factors for infection caused by ciprofloxacin-resistant Escherichia coli and extended-spectrum β-lactamace (ESBL)-producing strains in Rwanda. Of 1,012 urine cultures prospectively studied, a total of 196 (19.3%) yielded significant growth of a single organism. The most common isolate (60.7%) was Escherichia coli. The antibiotics commonly used in UTIs are less effective except Fosfomycin-trometamol and imipinem. The use of ciprofloxacin in the previous 6 months (odds ratio [OR] = 7.59 [1.75–32.74]), use of other antibiotics in the previous 6 months (OR = 1.02 [1.02–2.34]), and production of ESBL (OR = 19.32 [2.62–142.16]) were found to be associated with ciprofloxacin resistance among the E. coli isolates. Risk factors for ESBL positivity were the use of ciprofloxacin and third-generation cephalosporin in the preceding 6 months (OR = 3.05 [1.42–6.58] and OR = 9.78 [2.71–35.25], respectively); and being an inpatient (OR = 2.27 [1.79–2.89]). Fosfomycin-trometamol could be included as a reasonable alternative for the therapy of uncomplicated UTI in Rwanda.

Author Notes

*Address correspondence to Claude Mambo Muvunyi, Faculty of Medicine NUR, P.O. Box 217, Huye/Rwanda. E-mail: cmuvunyi@nur.ac.rw

Financial support: This study was financially supported by a PhD grant from the Ghent University, Ghent, Belgium through its VLIR (Flemish Interuniversity Council) own initiative project number VLIR-UOS ZEIN2007PR342-19878.

Disclosure: Part of this manuscript was presented at the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy in Boston, MA in September 2010 (control/tracking number: 2010-A-1286-ASM-ICAAC).

Authors' addresses: Claude Mambo Muvunyi, Florence Masaisa, Claude Bayingana, Léon Mutesa, André Musemakweri, and Grégoire Muhirwa, Faculty of Medicine NUR, Huye/Rwanda, E-mails: cmuvunyi@nur.ac.rw, kabasius@yahoo.fr, cbayingana@nur.ac.rw, lmutesa@nur.ac.rw, amusemakweri@nur.ac.rw, and gmuhirwa@nur.ac.rw. Geert (W.) Claeys, Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, De Pintelaan 185, Ghent, Belgium, E-mail: geert.claeys@ugent.be.

Save