Climate Variability and Dengue Fever in Warm and Humid Mexico

Felipe J. Colón-González Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom; School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom

Search for other papers by Felipe J. Colón-González in
Current site
Google Scholar
PubMed
Close
,
Iain R. Lake Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom; School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom

Search for other papers by Iain R. Lake in
Current site
Google Scholar
PubMed
Close
, and
Graham Bentham Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom; School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom

Search for other papers by Graham Bentham in
Current site
Google Scholar
PubMed
Close
Restricted access

Multiple linear regression models were fitted to look for associations between changes in the incidence rate of dengue fever and climate variability in the warm and humid region of Mexico. Data were collected for 12 Mexican provinces over a 23-year period (January 1985 to December 2007). Our results show that the incidence rate or risk of infection is higher during El Niño events and in the warm and wet season. We provide evidence to show that dengue fever incidence was positively associated with the strength of El Niño and the minimum temperature, especially during the cool and dry season. Our study complements the understanding of dengue fever dynamics in the region and may be useful for the development of early warning systems.

Author Notes

*Address correspondence to Felipe J. Colón-González, Climatic Research Unit 01.05, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom NR4 7TJ. E-mail: F.Colon@uea.ac.uk

Financial support: Felipe J. Colón-González received a scholarship from the National Council of Science and Technology of Mexico (CONACYT).

Authors' addresses: Felipe J. Colón-González, Tyndall Centre for Climate Change Research (Headquarters), School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom, E-mail: F.Colon@uea.ac.uk. Iain R. Lake and Graham Bentham, School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom, E-mails: I.Lake@uea.ac.uk and G.Bentham@uea.ac.uk.

  • 1.

    Reiter P, 2001. Climate change and mosquito-borne disease. Environ Health Perspect 109 (Suppl 1): 141161.

  • 2.

    Hsieh YH, Chen WS, 2009. Turning points, reproduction number, and impact of climatological events for multi-wave dengue outbreaks. Trop Med Int Health 14: 628638.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Günther J, Ramírez-Palacio LR, Pérez-Ishiwara DG, Salas-Benito JS, 2009. Distribution of dengue cases in the state of Oaxaca, Mexico, during the period 2004–2006. J Clin Virol 45: 218222.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Suaya J, Shepard D, Siqueira J, Martelli C, Lum L, Tan L, Kongsin S, Jiamton S, Garrido F, Montoya R, Armien B, Rekol H, Castillo L, Caram M, Sah B, Sughayyar R, Tyo K, Halstead S, 2009. Cost of dengue cases in eight countries in the Americas and Asia: a prospective study. Am J Trop Med Hyg 80: 846855.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Clark D, Mammen M Jr, Nisalak A, Puthimethee V, Endy T, 2005. Economic impact of dengue fever/dengue hemorrhagic fever in Thailand at the family and population levels. Am J Trop Med Hyg 72: 786791.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    INEGI, 2005. Instituto Nacional de Estadística, Geografía e Informática. Población rural y urbana. Available at: http://cuentame.inegi.gob.mx/poblacion/rur_urb.aspx?tema=. Accessed May 2, 2010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    CONAPO, 2005. Consejo Nacional de Población. Índice de marginación a nivel localidad 2005. Available at: http://www.conapo.gob.mx/index.php. Accessed February 14, 2010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cazelles B, Chavez M, De Magny C, Guégan J, Hales S, 2007. Time-dependent spectral analysis of epidemiological time-series with wavelets. J R Soc Interface 4: 625636.

  • 9.

    Wearing HJ, Rohani P, 2006. Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci USA 103: 1180211807.

  • 10.

    Nisalak A, Endy TP, Nimmannitya S, Kalayanarooj S, Thisayakorn U, Scott RM, Burke DS, Hoke CH, Innis BL, Vaughn DW, 2003. Serotype-specific dengue virus circulation and dengue disease in Bangkok, Thailand from 1973 to 1999. Am J Trop Med Hyg 68: 191202.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Koopman JS, Prevots DR, Vaca-Mann MA, Gómez-Dantés H, Zárate-Aquino ML, Longini IM Jr, Sepúlveda-Amor J, 1991. Determinants and predictors of dengue infection in Mexico. Am J Epidemiol 133: 11681178.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Brunkard JM, Cifuentes E, Rothenberg SJ, 2008. Assessing the roles of temperature, precipitation, and ENSO in dengue re-emergence on the Texas-Mexico border region. Salud Publica Mex 50: 227234.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Focks D, Brenner R, Hayes J, Daniels E, 2000. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg 62: 1118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Chadee D, Shivnauth B, Rawlins S, Chen A, 2007. Climate mosquito indices and the epidemiology of dengue fever in Trinidad. Ann Trop Med Parasitol 101: 6977.

  • 15.

    Chowell G, Sanchez F, 2006. Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. J Environ Health 68: 4044.

  • 16.

    García J, Loroño M, Farfan JA, Flores L, Rosado E, Rivero N, Najera R, Gomez S, Lira V, Gonzalez P, Lozano S, Elizondo D, Beaty BJ, Eisen L, 2008. Dengue virus-infected Aedes aegypti in the home environment. Am J Trop Med Hyg 79: 940950.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hurtado-Díaz M, Riojas-Rodríguez H, Rothenberg SJ, Gómez-Dantés H, Cifuentes E, 2007. Impact of climate variability on the incidence of dengue in Mexico. Trop Med Int Health 2: 13271337.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    CENAVECE, 2008. Centro Nacional de Vigilancia Epidemiológica y Control de Enfermedades (Mexican Ministry of Health). Lineamientos para la Vigilancia Epidemiológica de Fiebre por Dengue y Fiebre Hemorrágica por Dengue. Available at: http://www.dgepi.salud.gob.mx/denguepano/Lineamientos.pdf. Accessed May 2, 2010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    NOAA, 2009. National Oceanic and Atmospheric Administration (United States Department of Commerce). Monthly Atmospheric and SST Indices. Available at: http://www.cpc.noaa.gov/data/indices/sstoi.indices. Accessed January 22, 2010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hanley DE, Bourassa MA, O'Brien JJ, Smith SR, Spade ER, 2003. A quantitative evaluation of ENSO indices. J Clim 16: 12491258.

  • 21.

    Trenberth KE, 1997. The definition of El Niño. Bull Am Meteorol Soc 78: 27712777.

  • 22.

    Cazelles B, Chavez M, McMichael A, Hales S, 2005. Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med 2: e106.

  • 23.

    Johanson MA, Cummings DA, Glass GE, 2009. Multiyear climate variability and dengue—El Niño southern oscillation, weather, and dengue incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. PLoS Med 6: e1000168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Lake IR, Gillespie IA, Bentham CG, Nichols G, Lane C, Adak GK, Threlfall EJ, 2009. A re-evaluation of the impact of temperature and climate change on foodborne illness. Epidemiol Infect 137: 15381547.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.

  • 26.

    Magaña V, Pérez J, Vázquez-Aguirre JL, Carrisoza E, Pérez J, 2004. El Niño y el clima. Magaña V, ed. Los impactos del Niño en México. México City, Mexico: Universidad Nacional Autónoma de México and Secretaría de Gobernación, 2368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Hales S, Weinstein P, Souares Y, Woodward A, 1999. El Niño and the dynamics of vectorborne disease transmission. Environ Health Perspect 107: 99102.

  • 28.

    Gagnon AS, Bush ABG, Smoyer-Tomic KE, 2001. Dengue epidemics and the El Niño Southern Oscillation. Clim Res 19: 3543.

  • 29.

    Kovats RS, 2000. El Niño and human health. Bull World Health Organ 78: 11271135.

  • 30.

    CENAVECE, 2003. Centro Nacional de Vigilancia Epidemiológica y Control de Enfermedades (Mexican Ministry of Health). Manual para la Vigilancia, Diagnóstico, Prevención y Control del Dengue. Available at: http://www.cenave.gob.mx/Dengue/. Accessed March 3, 2010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Sriprom M, Chalvet-Monfray K, Chaimane T, Vongsawat K, Bicout D, 2010. Monthly district level risk of dengue occurrences in Sakon Nakhon Province, Thailand. Sci Total Environ 408: 55215528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hemme R, Tank JL, Chadee DD, Severson DW, 2009. Environmental conditions in water storage drums and influences on Aedes aegypti in Trinidad, West Indies. Acta Trop 112: 5966.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Wu PC, Lay JG, Guo HR, Lin CY, Lung SC, Su HJ, 2009. Higher temperature and urbanization affect the spatial patterns of dengue fever transmission in subtropical Taiwan. Sci Total Environ 407: 22242233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Watts D, Burke D, Harrison B, Whitmire R, Nisalak A, 1987. Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143152.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Keating J, 2001. An investigation into the cyclical incidence of dengue fever. Soc Sci Med 53: 15871597.

  • 36.

    Conde-Osorio M, 2003. Estudio de la longevidad y el ciclo gronotrófico del Aedes (Stegomyia) aegypti (Linnaeus, 1762), cepa Girardot (Cundinamarca) en condiciones de laboratorio. BSc thesis, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Focks DA, Barrera R, 2006. Dengue Transmission Dynamics: Assessment and Implications for Control. Report on the Scientific Working Group on Dengue, 2006. Geneva, Switzerland: World Health Organization, 92109.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Patz JA, Martens WJM, Focks DA, Jetten TH, 1998. Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106: 147153.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Tsuzuki A, Duoc VT, Higa Y, Yen NT, Takagi M, 2009. High potential risk of dengue transmission during the hot-dry season in NhaTrang City, Vietnam. Acta Trop 111: 325329.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Gómez-Dantés H, 2007. Elementos económicos y políticos que impactan en el control del dengue en México. Salud Publica Mex 49: 117119.

  • 41.

    Padmanabha H, Soto E, Mosquera M, Lord C, Lounibos L, 2010. ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7: 7890.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z, 2007. Global climate projections. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 747845.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Christensen J, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli R, Kwon W, Laprise R, Magaña-Rueda V, Mearns L, Menéndez C, Räisänen J, Rinke A, Sarr A, Whetton P, 2007. Regional climate projections. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K, Tignor M, Miller H, eds. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 847940.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Confalonieri U, Menne B, Akhtar R, Ebi K, Hauengue M, Kovats R, Revich B, Woodward A, 2007. Human health. Parry M, Canziani O, Palutikof J, van der Linden P, Hanson C, eds. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press, 391431.

    • PubMed
    • Search Google Scholar
    • Export Citation
Past two years Past Year Past 30 Days
Abstract Views 1880 1485 302
Full Text Views 742 24 0
PDF Downloads 336 16 0
 

 

 

 
 
Affiliate Membership Banner
 
 
Research for Health Information Banner
 
 
CLOCKSS
 
 
 
Society Publishers Coalition Banner
Save